Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This text covers the basic theory and computation for mathematical modeling in linear programming. It provides a strong background on how to set up mathematical proofs and high-level computation methods, and includes substantial background material and direction. Paris presents an intuitive and novel discussion of what it means to solve a system of equations that is a crucial stepping stone for solving any linear program. The discussion of the simplex method for solving linear programs gives an economic interpretation to every step of the simplex algorithm. The text combines in a unique and novel way the microeconomics of production with the structure of linear programming to give students and scholars of economics a clear notion of what it means, formulating a model of economic equilibrium and the computation of opportunity cost in the presence of many outputs and inputs.
The search for symmetry is part of the fundamental scientific paradigm in mathematics and physics. Can this be valid also for economics? This book represents an attempt to explore this possibility. The behavior of price-taking producers, monopolists, monopsonists, sectoral market equilibria, behavior under risk and uncertainty, and two-person zero- and non-zero-sum games are analyzed and discussed under the unifying structure called the linear complementarity problem. Furthermore, the equilibrium problem allows for the relaxation of often-stated but unnecessary assumptions. This unifying approach offers the advantage of a better understanding of the structure of economic models. It also introduces the simplest and most elegant algorithm for solving a wide class of problems.
The search for symmetry is part of the fundamental scientific paradigm in mathematics and physics. Can this be valid also for economics? This book represents an attempt to explore this possibility. The behavior of price-taking producers, monopolists, monopsonists, sectoral market equilibria, behavior under risk and uncertainty, and two-person zero- and non-zero-sum games are analyzed and discussed under the unifying structure called the linear complementarity problem. Furthermore, the equilibrium problem allows for the relaxation of often-stated but unnecessary assumptions. This unifying approach offers the advantage of a better understanding of the structure of economic models. It also introduces the simplest and most elegant algorithm for solving a wide class of problems.
|
You may like...
|