Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
In the ten years since the scientific rationale for the design, synthesis and application of inorganic and organometallic polymers (IOPs) was first conceptualised, we have witnessed the first tentative exploration of IOPs as precursors to new materials, with efforts focusing on the design and synthesis of novel ceramic precursors. Developing expertise led to precursor studies combined with the characterisation of the transformation processes that occur when IOPs are converted to ceramic materials. Now at maturity, the science presented in this volume reveals the polymer precursor approach to materials synthesis together with examples of processing ceramic shapes for a range of mechanical properties, the development of sophisticated, noninvasive analytical techniques, and IOP design rationales relying on well-defined processing-property relationships. The production of multifunctional IOPs is described, providing ion conductivity, gas sensing, bioactivity, magnetic properties, etc., combined with processability. The existence of well-defined IOPs and the exquisite control that can be exerted on sol-gel systems now provide access to such a variety of mixed organic-organometallic and/or inorganic hybrid systems that their exploitation is likely to develop into an entirely new field of materials chemistry. Future exciting avenues of research are also being opened up with the advent of buckyballs, Met-Cars, dopable preceramics, rigid-rod organometallics, and molecular tinkertoys.
Although, carbon is only one of one hundred plus elements, the polymer science lit erature consists primarily of studies on carbon based polymers. In part, this reflects the varied feedstock sources and in part, the type of bonds and bond forming reactions avail able to form organic polymers that are not available to the inorganic and organometallic chemist. However, recent intense interest in polymers with novel optical, electronic or magnetic properties or polymers that can serve as precursors to ceramic, semiconductor, metallic or superconductor materials has served as a driver for the development of novel synthetic routes and characterization techniques that have launched many new inorganic and organometallic oligomers and polymer systems. The following chapters represent an effort to provide an overview of several new and continuing areas of development in inorganic and organometallic polymer science. This book represents the second in a series of books we have edited on inorganic and organometallic polymer chemistry (1. Transformation of Organo-metallics into Common and Exotic Materials, NATO ASI Series Vol 141. 3. Inorganic and Organometallic Polymers with Special Properties, NATO ASI Series in press). In this series, we attempt to develop, for the reader, an understanding of the breadth, depth and potential of inorganic and organometallic polymer science."
In the ten years since the scientific rationale for the design, synthesis and application of inorganic and organometallic polymers (IOPs) was first conceptualised, we have witnessed the first tentative exploration of IOPs as precursors to new materials, with efforts focusing on the design and synthesis of novel ceramic precursors. Developing expertise led to precursor studies combined with the characterisation of the transformation processes that occur when IOPs are converted to ceramic materials. Now at maturity, the science presented in this volume reveals the polymer precursor approach to materials synthesis together with examples of processing ceramic shapes for a range of mechanical properties, the development of sophisticated, noninvasive analytical techniques, and IOP design rationales relying on well-defined processing-property relationships. The production of multifunctional IOPs is described, providing ion conductivity, gas sensing, bioactivity, magnetic properties, etc., combined with processability. The existence of well-defined IOPs and the exquisite control that can be exerted on sol-gel systems now provide access to such a variety of mixed organic-organometallic and/or inorganic hybrid systems that their exploitation is likely to develop into an entirely new field of materials chemistry. Future exciting avenues of research are also being opened up with the advent of buckyballs, Met-Cars, dopable preceramics, rigid-rod organometallics, and molecular tinkertoys.
Only in the past decade, has the scientific and industrial community come to realize the potential utility offered by inorganic and organometallic polymers (lOPs) for a wide variety of applications. This potential is especially important for applications requiring multifunctional polymers, e.g. for smart materials, nanotechnology, biomimetic systems (neural networks), photonics, etc; lOPs with special properties. The breadth of perfor- mance requirements for the individual areas of application is enormous as are the problems pertaining to generating low cost, high performance, processable lOPs. This book represents the third in a series of books we have edited on inorganic and organometallic polymer chemistry (1. Transfonnation of Organometallics into Common and Exotic Materials, NATO ASI Series Vol 141. 2. Inorganic and Organometallic Oligo- mers and Polymers, Kluwer publications). In this series, we have attempted to identify important trends that help to define for the reader; the potential scope of lOP science as well as the problems that must be surmounted to realize this potential. The focus of the work presented in the following chapters is primarily on the relationships between lOPs and solid state materials with special properties, e.g. conducting, magnetic, photonic and structural materials.
Although, carbon is only one of one hundred plus elements, the polymer science lit erature consists primarily of studies on carbon based polymers. In part, this reflects the varied feedstock sources and in part, the type of bonds and bond forming reactions avail able to form organic polymers that are not available to the inorganic and organometallic chemist. However, recent intense interest in polymers with novel optical, electronic or magnetic properties or polymers that can serve as precursors to ceramic, semiconductor, metallic or superconductor materials has served as a driver for the development of novel synthetic routes and characterization techniques that have launched many new inorganic and organometallic oligomers and polymer systems. The following chapters represent an effort to provide an overview of several new and continuing areas of development in inorganic and organometallic polymer science. This book represents the second in a series of books we have edited on inorganic and organometallic polymer chemistry (1. Transformation of Organo-metallics into Common and Exotic Materials, NATO ASI Series Vol 141. 3. Inorganic and Organometallic Polymers with Special Properties, NATO ASI Series in press). In this series, we attempt to develop, for the reader, an understanding of the breadth, depth and potential of inorganic and organometallic polymer science."
The design, -synthesis, and selective pyrolytic conversion of organo metallic precursdrs to materials of high purity or specific morphology (for electronic or optical applications), high strength and/or high-temperature stability (for structural or refractory applications) represents a poten tial area of extreme growth at the overlap of chemistry and materials science (materials chemistry). Research in this area is likely to have considerable impact at both the academic and societal levels because it will require development of scientific expertise in areas currently not well understood. Examples include: (1) The thermodynamics of molecular rearrangements in organometallic molecules at temperatures above 200 DegreesC; (2) The electronic properties of amorphous ceramic materials; (3) The phys icochemical properties of ceramic molecular composites; and (4) The optical properties of multicomponent glasses made by sol-gel processing. The opportunity to establish the scientific principles needed to pursue useful research goals in "materials chemistry" requires communica tion between chemists, ceramists, metallurgists, and physicists. To date, there have been few opportunities to create an environment where such communication might occur. The objective of this NATO Advanced Research Workshop was to promote discussions between experts in the varibus disci plines aligned with "materials chemistry. " These discussions were intended to identify the scope and potential rewards of research efforts in the development of: Custom-designed precursors to common and exotic materials, methods of selectively transforming these precursors in high yield to the desired material, and methods of characterizing the final products.
Since the beginning of the nanotechnology era, research and development in this field has experienced an explosive growth in academia and industry. Topics covered in this book include synthesis and characterization of nanomaterials, nanoscale phenomena in electronic ceramics, nanostructured bioceramics, industrial development and application, and much more.
|
You may like...
|