Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Damage mechanics is concerned with mechanics-based analyses of microstructural events in solids responsible for changes in their response to external loading. The microstructural events can occur as cracks, voids, slipped regions, etc., with a spatial distribution within the volume of a solid. If a solid contains oriented elements in its microsctructure, e.g. fibers, the heterogeneity and asisotropy aspects create situations which form a class of problems worthy of special treatment. This book deals with such treatments with particular emphasis on application to technological composite materials. Chapter one describes the basic principles underlying both the micromechanics approach and the continuum damage mechanics approach. It also reviews the relevant statistical concepts. The next three chapters are devoted to developments of the continuum damage mechanics approach related to characterization of damage with internal variables, evolution of damage and its coupling with other inelastic effects such as plasticity. Chapter 5 describes observations of damage from notches in composite laminates and puts forward some pragmatic modelling ideas for a complex damage configuration. The next two chapters form the bulk of the micromechanics approach in this volume. The first one deals with microcracking and the other with interfacial damage in composite materials.
Researchers are interested in the development of modeling methods applied to predicting the atomistic, microscopic and macroscopic response of composite materials under stress and hostile environment. Material behaviors at the macroscale level are controlled by their characteristics at lower scale levels. This fact is even more significant for composite materials. As a result, in order to design and analyze composite structures as well as new composite materials, it is necessary to model material behaviors at different length scales and to couple them. This book presents the state of the art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. This book will provide useful information for engineers for better design and analysis of composite structures. It will also serve as an invaluable reference for researchers.
Researchers are interested in the development of modeling methods applied to predicting the atomistic, microscopic and macroscopic response of composite materials under stress and hostile environment. Material behaviors at the macroscale level are controlled by their characteristics at lower scale levels. This fact is even more significant for composite materials. As a result, in order to design and analyze composite structures as well as new composite materials, it is necessary to model material behaviors at different length scales and to couple them. This book presents the state of the art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. This book will provide useful information for engineers for better design and analysis of composite structures. It will also serve as an invaluable reference for researchers.
Modelling Damage, Fatigue and Failure of Composite Materials provides the latest research on the field of composite materials, an area that has attracted a wealth of research, with significant interest in the areas of damage, fatigue, and failure. The book is a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials, and focuses on materials modeling, while also reviewing treatments to give the reader thorough direction for analyzing failure in composite structures. Part one of the book reviews the damage development in composite materials such as generic damage and damage accumulation in textile composites and under multiaxial loading, while part two focuses on the modeling of failure mechanisms in composite materials with attention given to fibre/matrix cracking and debonding, compression failure, and delamination fracture. Final sections examine the modeling of damage and materials response in composite materials, including micro-level and multi-scale approaches, the failure analysis of composite materials and joints, and the applications of predictive failure models.
|
You may like...
|