Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The Twenty Sixth Jerusalem Symposium reflected the high standards of these distinguished scientific meetings, which convene once a year at the Israel Academy of Sciences and Humanities in Jerusalem to discuss a specific topic in the broad area of quantum chemistry and biochemistry. The topic at this year's Jerusalem Symposium was reaction dynamics in clusters and condensed phases, which constitutes a truly interdisciplinary subject of central interest in the areas of chemical dynamics, kinetics, photochemistry and condensed matter chemical physics. The main theme of the Symposium was built around the exploration of the interrelationship between the dynamics in large finite clusters and in infinite bulk systems. The main issues addressed microscopic and macroscopic sol vation phenomena, cluster and bulk spectroscopy, photodissociation and vibrational predissociation, cage effects, interphase dynamics, reaction dynamics and energy transfer in clusters, dense fluids, liquids, solids and biophysical systems. The interdisciplinary nature of this research area was deliberated by intensive and extensive interactions between modern theory and advanced experimental methods. This volume provides a record of the invited lectures at the Symposium.
The Twenty Fourth Jerusalem Symposium reflected the high standards of these distinguished scientific meetings, which convene once a year at the Israel Academy of Sciences and Humanities in Jerusalem to discuss a specific topic in the broad area of quantum chemistry and biochemistry. The topic at this year's Jerusalem Symposium was mode selective chemistry, which constitutes a truly interdisciplinary subject of central interest in the areas of chemical physics, photochemistry and photobiology. The main theme of the Symposium was built around the exploration of the possibility and conditions for non-statistical reaction dynamics in molecules, van der Waals molecules, clusters and condensed phases. The main issues addressed photoselective and coherent excitation modes, bottlenecks for intramolecular vibrational energy redistribution, the consequences of the internal structure of many-atom systems and of rotational vibrational level structure for intramolecular dynamics, bond selective photodissociation, ultrafast chemical clocks for energy disposal, coherent control of photochemical reactions and nonstatistical unimolecular reaction dynamics. The interdisciplinary nature of this research area was deliberated by intensive and extensive interactions between theory and experiment. This volume provides a record of the invited lectures at the Symposium."
Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.
The Twenty Sixth Jerusalem Symposium reflected the high standards of these distinguished scientific meetings, which convene once a year at the Israel Academy of Sciences and Humanities in Jerusalem to discuss a specific topic in the broad area of quantum chemistry and biochemistry. The topic at this year's Jerusalem Symposium was reaction dynamics in clusters and condensed phases, which constitutes a truly interdisciplinary subject of central interest in the areas of chemical dynamics, kinetics, photochemistry and condensed matter chemical physics. The main theme of the Symposium was built around the exploration of the interrelationship between the dynamics in large finite clusters and in infinite bulk systems. The main issues addressed microscopic and macroscopic sol vation phenomena, cluster and bulk spectroscopy, photodissociation and vibrational predissociation, cage effects, interphase dynamics, reaction dynamics and energy transfer in clusters, dense fluids, liquids, solids and biophysical systems. The interdisciplinary nature of this research area was deliberated by intensive and extensive interactions between modern theory and advanced experimental methods. This volume provides a record of the invited lectures at the Symposium.
The Twenty Fourth Jerusalem Symposium reflected the high standards of these distinguished scientific meetings, which convene once a year at the Israel Academy of Sciences and Humanities in Jerusalem to discuss a specific topic in the broad area of quantum chemistry and biochemistry. The topic at this year's Jerusalem Symposium was mode selective chemistry, which constitutes a truly interdisciplinary subject of central interest in the areas of chemical physics, photochemistry and photobiology. The main theme of the Symposium was built around the exploration of the possibility and conditions for non-statistical reaction dynamics in molecules, van der Waals molecules, clusters and condensed phases. The main issues addressed photoselective and coherent excitation modes, bottlenecks for intramolecular vibrational energy redistribution, the consequences of the internal structure of many-atom systems and of rotational vibrational level structure for intramolecular dynamics, bond selective photodissociation, ultrafast chemical clocks for energy disposal, coherent control of photochemical reactions and nonstatistical unimolecular reaction dynamics. The interdisciplinary nature of this research area was deliberated by intensive and extensive interactions between theory and experiment. This volume provides a record of the invited lectures at the Symposium."
Lasers and chemical change is the study of radiation and molecules in dis equilibrium. The distinguishing feature of such systems is the extreme de parture from thermal equilibrium: the radiation is usually confined to a narrow frequency range, is well coll imated, and is far brighter than black body radiation; the chemical composition and also the distribution of mole cules over their different energy states are often markedly displaced from that expected at equilibrium. Such systems can be used as a source of laser radiation and, reversedly, lasers can rapidly and selectively displace mole cular systems from equilibrium. The subsequent evolution of the initially prepared state can then be monitored - again using lasers. One purpose of this book is to introduce the concepts required to d- cuss systems of radiation and molecules in disequilibrium. These include the physics of (laser) radiation and of radiation-matter interaction and molecular structure and spectroscopy. Excellent textbooks of these topics are available and our survey (in Chap. 3) is only intended to accent the es sential points, with special reference to atomic and molecular radiation physics. Considerably more attention is given to the topic of disequilibrium in chemical systems (Chap. 2). In particular we consider both inter- and intra molecular dynamics with special reference to energy requirements and energy disposal in chemical reactions and to what goes on in between - intramole cular energy migration."
|
You may like...
|