Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Planthoppers include some of the most devastating pests of major agricultural crops throughout the world. One species, the rice brown planthopper, is among the most economically important pests in Asia. In past decades, government policies encouraged the control of rice planthoppers with synthetic pesticides, a tactic which promoted insecticide resistance and often led to the pesticide-induced resurgence of pest populations. To deter planthopper outbreaks, a more ecologically sound management strategy is being implemented, one based on a thorough investigation of population dynamics, natural enemies, and the genetics of host plant and insecticide adaptation. In the natural habitats of North America and Europe, scientists have also used planthoppers as model organisms to test ecological and evolutionary theory. The consequence of these diverse studies is an extremely scattered literature on planthoppers that has never been synthesized from an ecological perspective. This volume summarizes what is known about planthopper ecology and biological control. It takes a theoretical approach yet is deeply concerned with the application of theory to the practical problems of pest management.
Planthoppers include some of the most devastating pests of major agricultural crops throughout the world. One species, the rice brown planthopper, is among the most economically important pests in Asia. In past decades, government policies encouraged the control of rice planthoppers with synthetic pesticides, a tactic which promoted insecticide resistance and often led to the pesticide-induced resurgence of pest populations. To deter planthopper outbreaks, a more ecologically sound management strategy is being implemented, one based on a thorough investigation of population dynamics, natural enemies, and the genetics of host plant and insecticide adaptation. In the natural habitats of North America and Europe, scientists have also used planthoppers as model organisms to test ecological and evolutionary theory. The consequence of these diverse studies is an extremely scattered literature on planthoppers that has never been synthesized from an ecological perspective. This volume summarizes what is known about planthopper ecology and biological control. It takes a theoretical approach yet is deeply concerned with the application of theory to the practical problems of pest management.
This volume results from a symposium entitled "Species and Ufe History Patterns: Geographic and Habitat Variation," held during the National Meeting of the Entomo logical Society of America in Denver, Colorado, USA in November, 1979. The stimu lus to assemble papers on this theme emerged from continuing discussions with col leagues concerning controversies in ecology and evolutionary biology, namely those associated with plant-herbivore interactions, life history theory, and the equilibrium status of communities. The study organisms used in this series of reports are all either herbivorous insects or those intimately associated with plants. In this volume we stress the variation found in life history traits and address some of the problems inherent in current life history theory. We include as life history traits not only traditional variables such as fecundity, size of young, and age to first and peak reproduction, but also diapause and migration, traits that synchronize reproduction with favorable plant resources. Because life history traits of phytophagous insects are influenced in part by spatial and temporal variation in the quality and availability of their host plants, we also consider the role that dis continuities in plant quality play in reducing insect fitness. Lastly, much of the tra ditional life history theory concerns itself with differences between the evolution of traits or constellations of traits when populations incur primarily density-independent, compared to density-dependent, mortality. Consequently, we address this issue and attempt to shed light on the equilibrium status of several phytophagous insect com munities."
This volume results from a symposium entitled "Species and Ufe History Patterns: Geographic and Habitat Variation", held during the National Meeting of the Entomo- logical Society of America in Denver, Colorado, USA in November, 1979. The stimu- lus to assemble papers on this theme emerged from continuing discussions with col- leagues concerning controversies in ecology and evolutionary biology, namely those associated with plant-herbivore interactions, life history theory, and the equilibrium status of communities. The study organisms used in this series of reports are all either herbivorous insects or those intimately associated with plants. In this volume we stress the variation found in life history traits and address some of the problems inherent in current life history theory. We include as life history traits not only traditional variables such as fecundity, size of young, and age to first and peak reproduction, but also diapause and migration, traits that synchronize reproduction with favorable plant resources. Because life history traits of phytophagous insects are influenced in part by spatial and temporal variation in the quality and availability of their host plants, we also consider the role that dis- continuities in plant quality play in reducing insect fitness. Lastly, much of the tra- ditional life history theory concerns itself with differences between the evolution of traits or constellations of traits when populations incur primarily density-independent, compared to density-dependent, mortality. Consequently, we address this issue and attempt to shed light on the equilibrium status of several phytophagous insect com- munities.
|
You may like...
A Shakespeare Story: Shakespeare Stories…
Andrew Matthews
Paperback
|