Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This volume provides an overview of the field of Hybrid Machine Translation (MT) and presents some of the latest research conducted by linguists and practitioners from different multidisciplinary areas. Nowadays, most important developments in MT are achieved by combining data-driven and rule-based techniques. These combinations typically involve hybridization of different traditional paradigms, such as the introduction of linguistic knowledge into statistical approaches to MT, the incorporation of data-driven components into rule-based approaches, or statistical and rule-based pre- and post-processing for both types of MT architectures. The book is of interest primarily to MT specialists, but also - in the wider fields of Computational Linguistics, Machine Learning and Data Mining - to translators and managers of translation companies and departments who are interested in recent developments concerning automated translation tools.
"Text Mining with MATLAB" provides a comprehensive introduction to text mining using MATLAB. It's designed to help text mining practitioners, as well as those with little-to-no experience with text mining in general, familiarize themselves with MATLAB and its complex applications. The first part provides an introduction to basic procedures for handling and operating with text strings. Then, it reviews major mathematical modeling approaches. Statistical and geometrical models are also described along with main dimensionality reduction methods. Finally, it presents some specific applications such as document clustering, classification, search and terminology extraction. All descriptions presented are supported with practical examples that are fully reproducible. Further reading, as well as additional exercises and projects, are proposed at the end of each chapter for those readers interested in conducting further experimentation.
This volume provides an overview of the field of Hybrid Machine Translation (MT) and presents some of the latest research conducted by linguists and practitioners from different multidisciplinary areas. Nowadays, most important developments in MT are achieved by combining data-driven and rule-based techniques. These combinations typically involve hybridization of different traditional paradigms, such as the introduction of linguistic knowledge into statistical approaches to MT, the incorporation of data-driven components into rule-based approaches, or statistical and rule-based pre- and post-processing for both types of MT architectures. The book is of interest primarily to MT specialists, but also - in the wider fields of Computational Linguistics, Machine Learning and Data Mining - to translators and managers of translation companies and departments who are interested in recent developments concerning automated translation tools.
Text Mining with MATLAB (R) provides a comprehensive introduction to text mining using MATLAB. It is designed to help text mining practitioners, as well as those with little-to-no experience with text mining in general, familiarize themselves with MATLAB and its complex applications. The book is structured in three main parts: The first part, Fundamentals, introduces basic procedures and methods for manipulating and operating with text within the MATLAB programming environment. The second part of the book, Mathematical Models, is devoted to motivating, introducing, and explaining the two main paradigms of mathematical models most commonly used for representing text data: the statistical and the geometrical approach. Eventually, the third part of the book, Techniques and Applications, addresses general problems in text mining and natural language processing applications such as document categorization, document search, content analysis, summarization, question answering, and conversational systems. This second edition includes updates in line with the recently released "Text Analytics Toolbox" within the MATLAB product and introduces three new chapters and six new sections in existing ones. All descriptions presented are supported with practical examples that are fully reproducible. Further reading, as well as additional exercises and projects, are proposed at the end of each chapter for those readers interested in conducting further experimentation.
|
You may like...
|