Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Developing software for current and especially for future architectures will require knowledge about parallel programming techniques of applications and library p- grammers. Multi-core processors are already available today, and processors with a dozen and more cores are on the horizon. The major driving force in hardware development, the game industry, has - ready shown interest in using parallel programming paradigms, such as OpenMP for further developments. Therefore developers have to be supported in the even more complex task of programming for these new architectures. HLRS has a long-lasting tradition of providing its user community with the most up-to-date software tools. Additionally, important research and development projects are worked on at the center: among the software packages developed are the MPI correctness checker Marmot, the OpenMP validation suite and the M- implementations PACX-MPI and Open MPI. All of these software packages are - ing extended in the context of German and European community research projects, such as ParMA, the InterActive European Grid (I2G) project and the German C- laborative Research Center (Sonderforschungsbereich 716). Furthermore, ind- trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software production-grade ready. In April 2007, a European project on Parallel Programming for Multi-core - chitectures, in short ParMA was launched, with a major focus on providing and developing tools for parallel programming.
This state-of-the-art survey features topics related to the impact of multicore, manycore, and coprocessor technologies in science and large-scale applications in an interdisciplinary environment. The papers included in this survey cover research in mathematical modeling, design of parallel algorithms, aspects of microprocessor architecture, parallel programming languages, hardware-aware computing, heterogeneous platforms, manycore technologies, performance tuning, and requirements for large-scale applications. The contributions presented in this volume are an outcome of an inspiring conference conceived and organized by the editors at the University of Applied Sciences (HfT) in Stuttgart, Germany, in September 2012. The 10 revised full papers selected from 21 submissions are presented together with the twelve poster abstracts and focus on combination of new aspects of microprocessor technologies, parallel applications, numerical simulation, and software development; thus they clearly show the potential of emerging technologies in the area of multicore and manycore processors that are paving the way towards personal supercomputing and very likely towards exascale computing.
This state-of-the-art survey features topics related to the impact of multicore, manycore, and coprocessor technologies in science and for large-scale applications in an interdisciplinary environment. The papers cover issues of current research in mathematical modeling, design of parallel algorithms, aspects of microprocessor architecture, parallel programming languages, hardware-aware computing, heterogeneous platforms, manycore technologies, performance tuning, and requirements for large-scale applications. The contributions presented in this volume offer a survey on the state of the art, the concepts and perspectives for future developments. They are an outcome of an inspiring conference conceived and organized by the editors at the Karlsruhe Institute Technology (KIT) in September 2011. The twelve revised full papers presented together with two contributed papers focus on combination of new aspects of microprocessor technologies, parallel applications, numerical simulation, and software development; thus they clearly show the potential of emerging technologies in the area of multicore and manycore processors that are paving the way towards personal supercomputing and very likely towards exascale computing.
Insects as a group occupy a middle ground in the biosphere between bacteria and viruses at one extreme, amphibians and mammals at the other. The size and general nature of insects present special problems to the study of ento mology. For example, many commercially available instruments are geared to measure in grams, while the forces commonly encountered in studying insects are in the milligram range. Therefore, techniques developed in the study of insects or in those fields concerned with the control of insect pests are often unique. Methods for measuring things are common to all sciences. Advances some times depend more on how something was done than on what was measured; indeed a given field often progresses from one technique to another as new methods are discovered, developed, and modified. Just as often, some of these techniques find their way into the classroom when the problems involved have been sufficiently ironed out to permit students to master the manipulations in a few laboratory periods. Many specialized techniques are confined to one specific research labora tory. Although methods may be considered commonplace where they are used, in another context even the simplest procedures may save considerable time. It is the purpose of this series (1) to report new developments in method ology, (2) to reveal sources of groups who have dealt with and solved particular entomological problems, and (3) to describe experiments which may be appli cable for use in biology laboratory courses."
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|