Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.
Developments in Antenna Analysis and Design presents recent developments in antenna design and modeling techniques for a wide variety of applications, chosen because they are contemporary in nature, have been receiving considerable attention in recent years, and are crucial for future developments. It includes topics such as body-worn antennas, that play an important role as sensors for Internet of Things (IoT), and millimeter wave antennas that are vitally important for 5G devices. It also covers a wide frequency range that includes terahertz and optical frequencies. Additionally, it discusses topics such as theoretical bounds of antennas and aspects of statistical analysis that are not readily found in the existing literature. This second volume covers the topics of: graphene-based antennas; millimeter-wave antennas; terahertz antennas; optical antennas; fundamental bounds of antennas; fast and numerically efficient techniques for analyzing antennas; statistical analysis of antennas; ultra-wideband arrays; reflectarrays; and antennas for small satellites, viz., CubeSats. The first volume covers the theory of characteristic modes (TCM) and characteristic bases; wideband antenna element designs; MIMO antennas; antennas for wireless communication; reconfigurable antennas employing microfluidics; flexible and body-worn antennas; and antennas using meta-atoms and artificially-engineered materials, or metamaterials (MTMs). The two volumes represent a unique combination of topics pertaining to antenna design and analysis, not found elsewhere. It is essential reading for the antenna community including designers, students, researchers, faculty engaged in teaching and research of antennas, and the users as well as decision makers.
Developments in Antenna Analysis and Design presents recent developments in antenna design and modeling techniques for a wide variety of applications, chosen because they are contemporary in nature, have been receiving considerable attention in recent years, and are crucial for future developments. It includes topics such as body-worn antennas, that play an important role as sensors for Internet of Things (IoT), and millimeter wave antennas that are vitally important for 5G devices. It also covers a wide frequency range that includes terahertz and optical frequencies. Additionally, it discusses topics such as theoretical bounds of antennas and aspects of statistical analysis that are not readily found in the existing literature. This first volume covers the theory of characteristic modes (TCM) and characteristic bases; wideband antenna element designs; MIMO antennas; antennas for wireless communication; reconfigurable antennas employing microfluidics; flexible and body-worn antennas; and antennas using meta-atoms and artificially-engineered materials, or metamaterials (MTMs). A second volume covers the topics of: graphene-based antennas; millimeter-wave antennas; terahertz antennas; optical antennas; fundamental bounds of antennas; fast and numerically efficient techniques for analyzing antennas; statistical analysis of antennas; ultra-wideband arrays; reflectarrays; and antennas for small satellites, viz., CubeSats. The two volumes represent a unique combination of topics pertaining to antenna design and analysis, not found elsewhere. It is essential reading for the antenna community including designers, students, researchers, faculty engaged in teaching and research of antennas, and the users as well as decision makers.
Numerically rigorous techniques for the computation of electromagnetic fields diffracted by an object become computationally intensive, if not impractical to handle, at high frequencies and one must resort to asymptotic methods to solve the scattering problem at short wavelengths. The asymptotic methods provide closed form expansions for the diffracted fields and are also useful for eliciting physical interpretations of the various diffraction phenomena. One of the principal objectives of this book is to discuss the different asymptotic methods in a unified manner. Although the book contains explicit formulas for computing the field diffracted by conducting or dielectric-coated objects, it also provides the mathematical foundations of the different methods and explains how they are interrelated.
|
You may like...
Doctor Who - The New Series: 5 - Volume…
Matt Smith, Karen Gillan, …
Blu-ray disc
(1)
R32 Discovery Miles 320
The South African Keto & Intermittent…
Rita Venter, Natalie Lawson
Paperback
|