Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 -29 September 2017 at Noah's On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
This is the first comprehensive book treatment of the emerging subdiscipline of set-valued mapping and enlargements of maximal monotone operators. It features several important new results and applications in the field. Throughout the text, examples help readers make the bridge from theory to application. Numerous exercises are also offered to enable readers to apply and build their own skills and knowledge.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 -29 September 2017 at Noah's On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
Set-valued analysis is an essential tool for the mathematical formulation of many real-life situations, e.g., equilibrium theory in mathematical economics. This work offers the first comprehensive treatment in book form of the fairly new subdiscipline of enlargements of maximal monotone operators, including several important new results in the field. In the last decades, with the development of nonsmooth optimization, effective algorithms have been developed to solve these kinds of problems, such as nonsmooth variational inequalities. Several of these methods, such as bundle methods for variational problems, are fully developed and analyzed in this book. The first chapters provide a self-contained review of the basic notions and fundamental results in set-valued analysis, including set convergence and continuity of set-valued mappings together with many important results in infinite-dimensional convex analysis, leading to the classical fixed point results due to Ekeland, Caristi and Kakutani. Next, an in-depth introduction to monotone operators is developed, emphasizing results related to maximality of subdifferentials and of sums of monotone operators. Building on this foundational material, the second part of the monograph contains new results (all of them established during the last decade) on the concept of enlargements of monotone operators, with applications to variational inequalities, bundle-type methods, augmented Lagrangian methods, and proximal point algorithms. Audience:
|
You may like...
|