![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Production from tropical agricultural systems will need to increase to satisfy the rising food demand of an increasing population coupled with changes in consumption patterns. At the same time, the agricultural sector is a significant source of greenhouse gases (GHG) in many developing countries, which can be attributed mainly to land-use change and methane emissions from rice and livestock. But how can we reconcile less GHG emissions from tropical agricultural systems while increasing productivity? Due to the interactive nature of these issues, this book is compiled of articles on natural resource management, as well as the socio-economic aspects of GHG mitigation. The scope of mitigation options in tropical agriculture is discussed for three different activities: (a) agroforestry; (b) rice-based production systems; (c) pasture/animal husbandry. Agronomic solutions alone will not be sufficient, as the institutional and economic frameworks within which farmers operate dictate whether a recommended agronomic management practice is acceptable. The prevention of deforestation, and the re-forestation of degraded land, could become key elements to national climate protection programs of some developing countries. Alternative management practices in rice-based and pasture systems may offer win-win options to reduce emissions and improve resource-use efficiencies.
Rice production is affected by changing climate conditions and has the dual role of contributing to global warming through emissions of the greenhouse gas methane. Climate change has been recognized as a major threat to the global environment. Because of insufficient field data, rice-growing countries face a problem when trying to comply with the United Nations Framework Convention on Climate Change stipulations to compile a national inventory of emissions and to explore mitigation options. Given the expected doubling in rice production in Asia, the need to evaluate the interaction between climate change and rice production is critical to forming a sound basis for future directions of technology developments by policy makers, agriculturists, environmentalists, rice producers, and rice consumers. The present book comprises two sections. The first part documents a comprehensive overview of the results achieved from an interregional research effort to quantify methane emission from major rice ecosystems and to identify efficient mitigation options. This research report broadens understanding of the contribution of rice cultivation to methane emissions and clarifies that emissions are relatively low, except in specific rice ecosystems, and that these high emissions could be ameliorated without sacrificing yield. The second section shows results from other projects that investigated the role of rice cultivators in field and laboratory approaches. The findings represent inputs for future modeling approaches in the role of rice cultivators. The expanded database generated by other projects is reflected in modeling efforts.
Production from tropical agricultural systems will need to increase to satisfy the rising food demand of an increasing population coupled with changes in consumption patterns. At the same time, the agricultural sector is a significant source of greenhouse gases (GHG) in many developing countries, which can be attributed mainly to land-use change and methane emissions from rice and livestock. But how can we reconcile less GHG emissions from tropical agricultural systems while increasing productivity? Due to the interactive nature of these issues, this book is compiled of articles on natural resource management, as well as the socio-economic aspects of GHG mitigation. The scope of mitigation options in tropical agriculture is discussed for three different activities: (a) agroforestry; (b) rice-based production systems; (c) pasture/animal husbandry. Agronomic solutions alone will not be sufficient, as the institutional and economic frameworks within which farmers operate dictate whether a recommended agronomic management practice is acceptable. The prevention of deforestation, and the re-forestation of degraded land, could become key elements to national climate protection programs of some developing countries. Alternative management practices in rice-based and pasture systems may offer win-win options to reduce emissions and improve resource-use efficiencies.
|
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|