Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Elwyn Berlekamp, John Conway, and Richard Guy wrote 'Winning Ways for your Mathematical Plays' and turned a recreational mathematics topic into a full mathematical fi eld. They combined set theory, combinatorics, codes, algorithms, and a smattering of other fi elds, leavened with a liberal dose of humor and wit. Their legacy is a lively fi eld of study that still produces many surprises. Despite being experts in other areas of mathematics, in the 50 years since its publication, they also mentored, talked, and played games, giving their time, expertise, and guidance to several generations of mathematicians. This volume is dedicated to Elwyn Berlekamp, John Conway, and Richard Guy. It includes 20 contributions from colleagues that refl ect on their work in combinatorial game theory.
This carefully edited volume contains selected refereed papers based on lectures presented by many distinguished speakers at the "Integers Conference 2005," an international conference in combinatorial number theory. The conference was held in celebration of the 70th birthday of Ronald Graham, a leader in several fields of mathematics.
This volume contains selected refereed papers based on lectures presented at the 'Integers Conference 2007', an international conference in combinatorial number theory that was held in Carrollton, Georgia in October 2007. The proceedings include contributions from many distinguished speakers, including George Andrews, Neil Hindman, Florian Luca, Carl Pomerance, Ken Ono and Igor E. Shparlinski. Among the topics considered in these papers are additive number theory, multiplicative number theory, sequences, elementary number theory, theory of partitions, and Ramsey theory.
This fascinating look at combinatorial games, that is, games not involving chance or hidden information, offers updates on standard games such as Go and Hex, on impartial games such as Chomp and Wythoff's Nim, and on aspects of games with infinitesimal values, plus analyses of the complexity of some games and puzzles and surveys on algorithmic game theory, on playing to lose, and on coping with cycles. The volume is rounded out with an up-to-date bibliography by Fraenkel and, for readers eager to get their hands dirty, a list of unsolved problems by Guy and Nowakowski. Highlights include some of Siegel's groundbreaking work on loopy games, the unveiling by Friedman and Landsberg of the use of renormalization to give very intriguing results about Chomp, and Nakamura's 'Counting Liberties in Capturing Races of Go'. Like its predecessors, this book should be on the shelf of all serious games enthusiasts.
Is Nine-Men's Morris, in the hands of perfect players, a win for white or for black--or a draw? Can king, rook, and knight always defeat king and two knights in chess? What can Go players learn from economists? What are nimbers, tinies, switches, minies? This book deals with combinatorial games, that is, games not involving chance or hidden information. Their study is at once old and young: though some games, such as chess, have been analyzed for centuries, the first full analysis of a nontrivial combinatorial game (Nim) only appeared in 1902. This book deals with combinatorial games, that is, games not involving chance or hidden information. Their study is at once old and young: though some games, such as chess, have been analyzed for centuries, the first full anlaysis of a nontrivial combinatorial game (Nim) only appeared in 1902. The first part of this book will be accessible to anyone, regardless of background: it contains introductory expositions, reports of unusual contest between an angel and a devil. For those who want to delve more deeply, the book also contains combinatorial studies of chess and Go; reports on computer advances such as the solution of Nine-Men's Morris and Pentominoes; and new theoretical approaches to such problems as games with many players. If you have read and enjoyed Martin Gardner, or if you like to learn and analyze new games, this book is for you.
Combinatorial games are the strategy games that people like to play, for example chess, Hex, and Go. They differ from economic games in that there are two players who play alternately with no hidden cards and no dice. These games have a mathematical structure that allows players to analyse them in the abstract. Games of No Chance 4 contains the first comprehensive explorations of misere (last player to move loses) games, extends the theory for some classes of normal-play (last player to move wins) games and extends the analysis for some specific games. It includes a tutorial for the very successful approach to analysing misere impartial games and the first attempt at using it for misere partisan games. Hex and Go are featured, as well as new games: Toppling Dominoes and Maze. Updated versions of Unsolved Problems in Combinatorial Game Theory and the Combinatorial Games Bibliography complete the volume.
Is Nine-Men's Morris, in the hands of perfect players, a win for white or for black--or a draw? Can king, rook, and knight always defeat king and two knights in chess? What can Go players learn from economists? What are nimbers, tinies, switches, minies? This book deals with combinatorial games, that is, games not involving chance or hidden information. Their study is at once old and young: though some games, such as chess, have been analyzed for centuries, the first full analysis of a nontrivial combinatorial game (Nim) only appeared in 1902. This book deals with combinatorial games, that is, games not involving chance or hidden information. Their study is at once old and young: though some games, such as chess, have been analyzed for centuries, the first full anlaysis of a nontrivial combinatorial game (Nim) only appeared in 1902. The first part of this book will be accessible to anyone, regardless of background: it contains introductory expositions, reports of unusual contest between an angel and a devil. For those who want to delve more deeply, the book also contains combinatorial studies of chess and Go; reports on computer advances such as the solution of Nine-Men's Morris and Pentominoes; and new theoretical approaches to such problems as games with many players. If you have read and enjoyed Martin Gardner, or if you like to learn and analyze new games, this book is for you.
This fascinating look at combinatorial games, that is, games not involving chance or hidden information, offers updates on standard games such as Go and Hex, on impartial games such as Chomp and Wythoff's Nim, and on aspects of games with infinitesimal values, plus analyses of the complexity of some games and puzzles and surveys on algorithmic game theory, on playing to lose, and on coping with cycles. The volume is rounded out with an up-to-date bibliography by Fraenkel and, for readers eager to get their hands dirty, a list of unsolved problems by Guy and Nowakowski. Highlights include some of Siegel's groundbreaking work on loopy games, the unveiling by Friedman and Landsberg of the use of renormalization to give very intriguing results about Chomp, and Nakamura's 'Counting Liberties in Capturing Races of Go'. Like its predecessors, this book should be on the shelf of all serious games enthusiasts.
|
You may like...
Islam and Violence in the Modern Era
Beverley Milton-Edwards
Hardcover
R1,472
Discovery Miles 14 720
Hizbut Tahrir Indonesia and Political…
Mohamed Nawab Mohamed Osman
Hardcover
R3,976
Discovery Miles 39 760
|