|
Showing 1 - 7 of
7 matches in All Departments
During these uncertain and turbulent times, intelligent
technologies including artificial neural networks (ANN) and machine
learning (ML) have played an incredible role in being able to
predict, analyze, and navigate unprecedented circumstances across a
number of industries, ranging from healthcare to hospitality.
Multi-factor prediction in particular has been especially helpful
in dealing with the most current pressing issues such as COVID-19
prediction, pneumonia detection, cardiovascular diagnosis and
disease management, automobile accident prediction, and vacation
rental listing analysis. To date, there has not been much research
content readily available in these areas, especially content
written extensively from a user perspective. Biomedical and
Business Applications Using Artificial Neural Networks and Machine
Learning is designed to cover a brief and focused range of
essential topics in the field with perspectives, models, and
first-hand experiences shared by prominent researchers, discussing
applications of artificial neural networks (ANN) and machine
learning (ML) for biomedical and business applications and a
listing of current open-source software for neural networks,
machine learning, and artificial intelligence. It also presents
summaries of currently available open source software that utilize
neural networks and machine learning. The book is ideal for
professionals, researchers, students, and practitioners who want to
more fully understand in a brief and concise format the realm and
technologies of artificial neural networks (ANN) and machine
learning (ML) and how they have been used for prediction of
multi-disciplinary research problems in a multitude of disciplines.
Rapidly generating and processing large amounts of data,
supercomputers are currently at the leading edge of computing
technologies. Supercomputers are employed in many different fields,
establishing them as an integral part of the computational sciences
Research and Applications in Global Supercomputing investigates
current and emerging research in the field, as well as the
application of this technology to a variety of areas. Highlighting
a broad range of concepts, this publication is a comprehensive
reference source for professionals, researchers, students, and
practitioners interested in the various topics pertaining to
supercomputing and how this technology can be applied to solve
problems in a multitude of disciplines.
With the development of computing technologies in today's
modernized world, software packages have become easily accessible.
Open source software, specifically, is a popular method for solving
certain issues in the field of computer science. One key challenge
is analyzing big data due to the high amounts that organizations
are processing. Researchers and professionals need research on the
foundations of open source software programs and how they can
successfully analyze statistical data. Open Source Software for
Statistical Analysis of Big Data: Emerging Research and
Opportunities provides emerging research exploring the theoretical
and practical aspects of cost-free software possibilities for
applications within data analysis and statistics with a specific
focus on R and Python. Featuring coverage on a broad range of
topics such as cluster analysis, time series forecasting, and
machine learning, this book is ideally designed for researchers,
developers, practitioners, engineers, academicians, scholars, and
students who want to more fully understand in a brief and concise
format the realm and technologies of open source software for big
data and how it has been used to solve large-scale research
problems in a multitude of disciplines.
During these uncertain and turbulent times, intelligent
technologies including artificial neural networks (ANN) and machine
learning (ML) have played an incredible role in being able to
predict, analyze, and navigate unprecedented circumstances across a
number of industries, ranging from healthcare to hospitality.
Multi-factor prediction in particular has been especially helpful
in dealing with the most current pressing issues such as COVID-19
prediction, pneumonia detection, cardiovascular diagnosis and
disease management, automobile accident prediction, and vacation
rental listing analysis. To date, there has not been much research
content readily available in these areas, especially content
written extensively from a user perspective. Biomedical and
Business Applications Using Artificial Neural Networks and Machine
Learning is designed to cover a brief and focused range of
essential topics in the field with perspectives, models, and
first-hand experiences shared by prominent researchers, discussing
applications of artificial neural networks (ANN) and machine
learning (ML) for biomedical and business applications and a
listing of current open-source software for neural networks,
machine learning, and artificial intelligence. It also presents
summaries of currently available open source software that utilize
neural networks and machine learning. The book is ideal for
professionals, researchers, students, and practitioners who want to
more fully understand in a brief and concise format the realm and
technologies of artificial neural networks (ANN) and machine
learning (ML) and how they have been used for prediction of
multi-disciplinary research problems in a multitude of disciplines.
With the development of computing technologies in today's
modernized world, software packages have become easily accessible.
Open source software, specifically, is a popular method for solving
certain issues in the field of computer science. One key challenge
is analyzing big data due to the high amounts that organizations
are processing. Researchers and professionals need research on the
foundations of open source software programs and how they can
successfully analyze statistical data. Open Source Software for
Statistical Analysis of Big Data: Emerging Research and
Opportunities provides emerging research exploring the theoretical
and practical aspects of cost-free software possibilities for
applications within data analysis and statistics with a specific
focus on R and Python. Featuring coverage on a broad range of
topics such as cluster analysis, time series forecasting, and
machine learning, this book is ideally designed for researchers,
developers, practitioners, engineers, academicians, scholars, and
students who want to more fully understand in a brief and concise
format the realm and technologies of open source software for big
data and how it has been used to solve large-scale research
problems in a multitude of disciplines.
|
You may like...
Sudoku 2
Gareth Moore
Paperback
R40
R33
Discovery Miles 330
|