Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book introduces nanoparticles as a powerful platform for vaccine design. Current challenges in vaccine development are discussed and the unique advantages nanoparticles provide in overcoming these challenges are explored. The authors offer fascinating insights into the immunological assets of using nanoparticles as delivery vehicles or adjuvants and present different materials that are being used in nanoparticle-based vaccine development, covering peptides, proteins, polymers, virus-like particles, and liposomes. Its contemporary research insights and practical examples for applications make this volume an inspiring read for researchers and clinicians in vaccinology and immunology. Chapter "Liposome Formulations as Adjuvants for Vaccines" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This two-volume work covers the molecular and cell biology, genetics and evolution of influenza viruses, the pathogenesis of infection, resultant host innate and adaptive immune response, prevention of infection through vaccination and approaches to the therapeutic control of infection.. Experts at the forefront of these areas provide critical assessments with regard to influenza virology, immunology, cell and molecular biology, and pathogenesis. Volume I provides overviews of the latest findings on molecular determinants of viral pathogenicity, virus entry and cell tropism, pandemic risk assessment, transmission and pathogenesis in animal species, viral evolution, ecology and antigenic variation, while Volume II focuses on the role of innate and adaptive immunity in pathogenesis, development of vaccines and antivirals.
This two-volume work covers the molecular and cell biology, genetics and evolution of influenza viruses, the pathogenesis of infection, resultant host innate and adaptive immune response, prevention of infection through vaccination and approaches to the therapeutic control of infection.. Experts at the forefront of these areas provide critical assessments with regard to influenza virology, immunology, cell and molecular biology, and pathogenesis. Volume I provides overviews of the latest findings on molecular determinants of viral pathogenicity, virus entry and cell tropism, pandemic risk assessment, transmission and pathogenesis in animal species, viral evolution, ecology and antigenic variation, while Volume II focuses on the role of innate and adaptive immunity in pathogenesis, development of vaccines and antivirals.
Recent years have seen unprecedented outbreaks of avian influenza A viruses. In particular, highly pathogenic H5N1 viruses have not only resulted in widespread outbreaks in domestic poultry, but have been transmitted to humans, resulting in numerous fatalities. The rapid expansion in their geographic distribution and the possibility that these viruses could acquire the ability to spread from person to person raises the risk that such a virus could cause a global pandemic with high morbidity and mortality. An effective influenza vaccine represents the best approach to prevent and control such an emerging pandemic. However, current influenza vaccines are directed at existing seasonal influenza viruses, which have little or no antigenic relationship to the highly pathogenic H5N1 strains. Concerns about pandemic preparedness have greatly stimulated research activities to develop eff- tive vaccines for pandemic influenza viruses, and to overcome the limitations inh- ent in current approaches to vaccine production and distribution. These limitations include the use of embryonated chicken eggs as the substrate for vaccine prod- tion, which is time-consuming and could involve potential biohazards in growth of new virus strains. Other limitations include the requirement that the current inac- vated influenza vaccines be administered using needles and syringes, requiring trained personnel, which could be a bottleneck when attempting to vaccinate large populations in mass campaigns. In addition, the current inactivated vaccines that are delivered by injection elicit limited protective immunity in the upper respiratory tract where the infection process is initiated.
This two-volume work covers the molecular and cell biology, genetics and evolution of influenza viruses, the pathogenesis of infection, resultant host innate and adaptive immune response, prevention of infection through vaccination and approaches to the therapeutic control of infection.. Experts at the forefront of these areas provide critical assessments with regard to influenza virology, immunology, cell and molecular biology, and pathogenesis. Volume I provides overviews of the latest findings on molecular determinants of viral pathogenicity, virus entry and cell tropism, pandemic risk assessment, transmission and pathogenesis in animal species, viral evolution, ecology and antigenic variation, while Volume II focuses on the role of innate and adaptive immunity in pathogenesis, development of vaccines and antivirals.Â
This two-volume work covers the molecular and cell biology, genetics and evolution of influenza viruses, the pathogenesis of infection, resultant host innate and adaptive immune response, prevention of infection through vaccination and approaches to the therapeutic control of infection.. Experts at the forefront of these areas provide critical assessments with regard to influenza virology, immunology, cell and molecular biology, and pathogenesis. Volume I provides overviews of the latest findings on molecular determinants of viral pathogenicity, virus entry and cell tropism, pandemic risk assessment, transmission and pathogenesis in animal species, viral evolution, ecology and antigenic variation, while Volume II focuses on the role of innate and adaptive immunity in pathogenesis, development of vaccines and antivirals.Â
Understanding the mechanisms involved in intracellular movement and localization of proteins is a central issue in cell biology. This volume is concerned with the events involved in the transport of membrane proteins, and the contents of vesicular compartments, to their ultimate destinations. In several chapters, particular attention is given to studies with viruses that are assembled by budding at specific membrane sites within the cell or at the cell surface; studies with such viral systems have provided significant insights into membrane biogenesis.
Recent years have seen unprecedented outbreaks of avian influenza A viruses. In particular, highly pathogenic H5N1 viruses have not only resulted in widespread outbreaks in domestic poultry, but have been transmitted to humans, resulting in numerous fatalities. The rapid expansion in their geographic distribution and the possibility that these viruses could acquire the ability to spread from person to person raises the risk that such a virus could cause a global pandemic with high morbidity and mortality. An effective influenza vaccine represents the best approach to prevent and control such an emerging pandemic. However, current influenza vaccines are directed at existing seasonal influenza viruses, which have little or no antigenic relationship to the highly pathogenic H5N1 strains. Concerns about pandemic preparedness have greatly stimulated research activities to develop eff- tive vaccines for pandemic influenza viruses, and to overcome the limitations inh- ent in current approaches to vaccine production and distribution. These limitations include the use of embryonated chicken eggs as the substrate for vaccine prod- tion, which is time-consuming and could involve potential biohazards in growth of new virus strains. Other limitations include the requirement that the current inac- vated influenza vaccines be administered using needles and syringes, requiring trained personnel, which could be a bottleneck when attempting to vaccinate large populations in mass campaigns. In addition, the current inactivated vaccines that are delivered by injection elicit limited protective immunity in the upper respiratory tract where the infection process is initiated.
This book introduces nanoparticles as a powerful platform for vaccine design. Current challenges in vaccine development are discussed and the unique advantages nanoparticles provide in overcoming these challenges are explored. The authors offer fascinating insights into the immunological assets of using nanoparticles as delivery vehicles or adjuvants and present different materials that are being used in nanoparticle-based vaccine development, covering peptides, proteins, polymers, virus-like particles, and liposomes. Its contemporary research insights and practical examples for applications make this volume an inspiring read for researchers and clinicians in vaccinology and immunology. Chapter "Liposome Formulations as Adjuvants for Vaccines" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
|
You may like...
|