Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
Non-invasive medical diagnosis (NIMD) is as old as medical practice itself. From the earliest healers' observations of odors, skin color, and breath sounds to today's wealth of technologies, the basics remain the same and keep the role of NIMD essential to effective medical care.
Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describes sensor dynamics, signal conditioning, and data display and storage Focuses on means of conditioning the analog outputs of various sensors Considers noise and coherent interference in measurements in depth Covers the traditional topics of DC null methods of measurement and AC null measurements Examines Wheatstone and Kelvin bridges and potentiometers Explores the major AC bridges used to measure inductance, Q, capacitance, and D Presents a survey of sensor mechanisms Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers Contains the classic means of measuring electrical quantities Examines digital interfaces in measurement systems Defines digital signal conditioning in instrumentation Addresses solid-state chemical microsensors and wireless instrumentation Introduces mechanical microsensors (MEMS and NEMS) Details examples of the design of measurement systems Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents.
Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation, Second Edition helps biomedical engineers understand the basic analog electronic circuits used for signal conditioning in biomedical instruments. It explains the function and design of signal conditioning systems using analog ICs-the circuits that enable ECG, EEG, EMG, ERG, tomographic images, biochemical spectrograms, and other crucial medical applications. This book demonstrates how op amps are the keystone of modern analog signal conditioning system design and illustrates how they can be used to build instrumentation amplifiers, active filters, and many other biomedical instrumentation systems and subsystems. It introduces the mathematical tools used to describe noise and its propagation through linear systems, and it looks at how signal-to-noise ratios can be improved by signal averaging and linear filtering. Features Analyzes the properties of photonic sensors and emitters and the circuits that power them Details the design of instrumentation amplifiers and medical isolation amplifiers Considers the modulation and demodulation of biomedical signals Examines analog power amplifiers, including power op amps and class D (switched) PAs Describes wireless patient monitoring, including Wi-Fi and Bluetooth communication protocols Explores RFID, GPS, and ultrasonic tags and the design of fractal antennas Addresses special analog electronic circuits and systems such as phase-sensitive rectifiers, phase detectors, and IC thermometers By explaining the "building blocks" of biomedical systems, the author illustrates the importance of signal conditioning systems in the devices that gather and monitor patients' critical medical information. Fully revised and updated, this second edition includes new chapters, a glossary, and end-of-chapter problems. What's New in This Edition Updated and revised material throughout the book A chapter on the applications, circuits, and characteristics of power amplifiers A chapter on wireless patient monitoring using UHF telemetry A chapter on RFID tags, GPS tags, and ultrasonic tags A glossary to help you decode the acronyms and terms used in biomedical electronics, physiology, and biochemistry New end-of-chapter problems and examples
Non-Invasive Instrumentation and Measurement in Medical Diagnosis, Second Edition discusses NIMD as a rapidly growing, interdisciplinary field. The contents within this second edition text is derived from Professor Robert B. Northrop's experience teaching for over 35 years in the Biomedical Engineering Department at the University of Connecticut. The text focusses on the instruments and procedures which are used for non-invasive medical diagnosis and therapy, highlighting why NIMD is the preferred procedure, whenever possible, to avoid the risks and expenses associated with surgically opening the body surface. This second edition also covers a wide spectrum of NIMD topics including: x-ray bone densitometry by the DEXA method; tissue fluorescence spectroscopy; optical interferometric measurement of nanometer tissue displacements; laser Doppler velocimetry; pulse oximetry; and applications of Raman spectroscopy in detecting cancer, to name a few. This book is intended for use in an introductory classroom course on Non-Invasive Medical Instrumentation and Measurements taken by juniors, seniors, and graduate students in Biomedical Engineering. It will also serve as a reference book for medical students and other health professionals intrigued by the topic. Practicing physicians, nurses, physicists, and biophysicists interested in learning state of the art techniques in this critical field will also find this text valuable. Non-Invasive Instrumentation and Measurement in Medical Diagnosis, Second Edition concludes with an expansive index, bibliography, as well as a comprehensive glossary for future reference and reading.
Noninvasive medical diagnosis (NIMD) is as old as medical practice itself. From the earliest healers' observations of odors, skin color, and breath sounds to today's wealth of technologies, the basics remain the same and keep the role of NIMD essential to effective medical care. Noninvasive Instrumentation and Measurement in Medical Diagnosis is the first book dedicated to NIMD tools and techniques. Featuring emerging technologies along with traditional instruments, it describes how these non-invasive tools and techniques work and explores developments that will make NIMD simpler, more reliable, less expensive, and risk-free. Much of the material is descriptive, but the author includes rigorous mathematical analysis where appropriate. The treatment is readily accessible to readers with a background in basic algebra and ordinary differential equations, basic circuit theory, and concepts such as frequency response and transient response of linear systems. The rapid evolution of biomedical instrumentation has meant that books just five years old are already outdated. Whether used for an upper-level, biomedical engineering class or as a reference for medical students, healthcare professional, physicists, or physiologists, Noninvasive Instrumentation and Measurement in Medical Diagnosis stands alone in presenting the state of NIMD art and science.
From a biomedical engineering perspective, this book takes an analytic, quantitative approach to describing the basic components of physiological regulators and control systems (PRCs). In Endogenous and Exogenous Regulation and Control of Physiological Systems, the author provides grounding in the classical methods of designing linear and nonlinear systems. He also offers state-of-the-art material on the potential of PRCs to treat immune system ailments, most notably AIDS and cancer.
Complex Systems is a new field of science studying how parts of a system give rise to the collective behaviors of the system, and how the system interacts with its environment. This book examines the complex systems involved in environmental sustainability, and examines the technologies involved to help mitigate human impacts, such as renewable energy, desalination, carbon capture, recycling, etc. It considers the relationships and balance between environmental engineering and science, economics, and human activity, with regard to sustainability.
The boundaries between simple and complicated, and complicated and complex system designations are fuzzy and debatable, even using quantitative measures of complexity. However, if you are a biomedical engineer, a biologist, physiologist, economist, politician, stock market speculator, or politician, you have encountered complex systems. Furthermore, your success depends on your ability to successfully interact with and manage a variety of complex systems. In order not to be blindsided by unexpected results, we need a systematic, comprehensive way of analyzing, modeling, and simulating complex systems to predict non-anticipated outcomes. In its engaging first chapters, the book introduces complex systems, Campbell's Law, and the Law of Unintended Consequences, and mathematics necessary for conversations in complex systems. Subsequent chapters illustrate concepts via commonly studied biological mechanisms. The final chapters focus on higher-level complexity problems, and introduce complexity in economic systems. Designed as a reference for biologists and biological engineers, Introduction to Complexity and Complex Systems lends itself to use in a classroom course to introduce advanced students studying biomedical engineering, biophysics, or physiology to complex systems. Engaging and illustrative, this book aids scientists and decision makers in managing biological complexity and complex systems.
Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describes sensor dynamics, signal conditioning, and data display and storage Focuses on means of conditioning the analog outputs of various sensors Considers noise and coherent interference in measurements in depth Covers the traditional topics of DC null methods of measurement and AC null measurements Examines Wheatstone and Kelvin bridges and potentiometers Explores the major AC bridges used to measure inductance, Q, capacitance, and D Presents a survey of sensor mechanisms Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers Contains the classic means of measuring electrical quantities Examines digital interfaces in measurement systems Defines digital signal conditioning in instrumentation Addresses solid-state chemical microsensors and wireless instrumentation Introduces mechanical microsensors (MEMS and NEMS) Details examples of the design of measurement systems Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents.
Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation, Second Edition helps biomedical engineers understand the basic analog electronic circuits used for signal conditioning in biomedical instruments. It explains the function and design of signal conditioning systems using analog ICs the circuits that enable ECG, EEG, EMG, ERG, tomographic images, biochemical spectrograms, and other crucial medical applications. This book demonstrates how op amps are the keystone of modern analog signal conditioning system design and illustrates how they can be used to build instrumentation amplifiers, active filters, and many other biomedical instrumentation systems and subsystems. It introduces the mathematical tools used to describe noise and its propagation through linear systems, and it looks at how signal-to-noise ratios can be improved by signal averaging and linear filtering. Features
By explaining the "building blocks" of biomedical systems, the author illustrates the importance of signal conditioning systems in the devices that gather and monitor patients critical medical information. Fully revised and updated, this second edition includes new chapters, a glossary, and end-of-chapter problems. What s New in This Edition
Illustrates the Complex Biochemical Relations that Permit Life to Exist It can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this concept is essential to their chosen profession. Introduction to Molecular Biology, Genomics, and Proteomics for Biomedical Engineers hones in on the specialized organic molecules in living organisms and how they interact and react. The book's sound approach to this intricately complex field makes it an exceptional resource for further exploration into the biochemistry, molecular biology, and genomics fields. It is also beneficial for electrical, chemical, and civil engineers as well as biophysicists with an interest in modeling living systems. This seminal reference includes many helpful tools for self study, including- 143 illustrations, 32 in color, to bolster understanding of complex biochemical relations 20 tables for quick access to precise data 100 key equations Challenging self-study problems within each chapter Conveys Human Progress in the Manipulation of Genomes at the Molecular Level In response to growing global interest in biotechnology, this valuable text sheds light on the evolutionary theories and future trends in genetic medicine and stem cell research. It provides a broader knowledge base on life-permitting complexities, illustrates how to model them quantitatively, and demonstrates how to manipulate them in genomic-based medicine and genetic engineering. Consequently, this book allows for a greater appreciation among of the incredible complexity of the biochemica
The first edition of this text, based on the author 's 30 years of teaching and research on neurosensory systems, helped biomedical engineering students and professionals strengthen their skills in the common network of applied mathematics that ties together the diverse disciplines that comprise this field. Updated and revised to include new material as the field has grown, Signals and Systems Analysis in Biomedical Engineering, Second Edition continues to provide a ready source of information on those specialized mathematical techniques most useful in describing and analyzing biomedical signals. New chapters on nonlinear and complex systems Enriched with many examples that promote sound practical analysis, this volume covers classical linear systems theory and its applications to biomedicine. It examines the important use of joint time-frequency analysis to characterize non-stationary physiological signals, and explores the mathematics of tomographic imaging (the Radon transform, the Fourier slice theorem, and the filtered back-projection algorithm). It also describes the analytical signal and the Hilbert transform and some of its biomedical applications. New chapters in this edition include one on the analysis of nonlinear biochemical systems and biochemical oscillators, as well as one introducing complex systems and illustrating ways to best model them. Four appendices with additional material Extensive appendices supplement the text, including "Simnon Programs Used in Chapters 11 and 12," "How to use Root Locus to Determine the Stability of SISO Linear Systems," "Signal Flow Graphs and Mason 's Rule," and "Computational Tools for Biomedical Signal Processing and Systems Analysis." An extensive glossary is included as well as an ample listing of sources for further study. A solutions manual is avaialble for instructors wishing to convert this refrence to classroom use.
Non-Invasive Instrumentation and Measurement in Medical Diagnosis, Second Edition discusses NIMD as a rapidly growing, interdisciplinary field. The contents within this second edition text is derived from Professor Robert B. Northrop's experience teaching for over 35 years in the Biomedical Engineering Department at the University of Connecticut. The text focusses on the instruments and procedures which are used for non-invasive medical diagnosis and therapy, highlighting why NIMD is the preferred procedure, whenever possible, to avoid the risks and expenses associated with surgically opening the body surface. This second edition also covers a wide spectrum of NIMD topics including: x-ray bone densitometry by the DEXA method; tissue fluorescence spectroscopy; optical interferometric measurement of nanometer tissue displacements; laser Doppler velocimetry; pulse oximetry; and applications of Raman spectroscopy in detecting cancer, to name a few. This book is intended for use in an introductory classroom course on Non-Invasive Medical Instrumentation and Measurements taken by juniors, seniors, and graduate students in Biomedical Engineering. It will also serve as a reference book for medical students and other health professionals intrigued by the topic. Practicing physicians, nurses, physicists, and biophysicists interested in learning state of the art techniques in this critical field will also find this text valuable. Non-Invasive Instrumentation and Measurement in Medical Diagnosis, Second Edition concludes with an expansive index, bibliography, as well as a comprehensive glossary for future reference and reading.
Complex systems is a new field of science studying how parts of a system give rise to the collective behaviours of the system, and how the system interacts with its environment. This book examines the complex systems involved in environmental sustainability, and examines the technologies involved to help mitigate human impacts, such as renewable energy, desalination, carbon capture, recycling, etc. It considers the relationships and balance between environmental engineering and science, economics, and human activity, with regard to sustainability.
Illustrates the Complex Biochemical Relations that Permit Life to Exist It can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this concept is essential to their chosen profession. Introduction to Molecular Biology, Genomics, and Proteomics for Biomedical Engineers hones in on the specialized organic molecules in living organisms and how they interact and react. The book's sound approach to this intricately complex field makes it an exceptional resource for further exploration into the biochemistry, molecular biology, and genomics fields. It is also beneficial for electrical, chemical, and civil engineers as well as biophysicists with an interest in modeling living systems. This seminal reference includes many helpful tools for self study, including- 143 illustrations, 32 in color, to bolster understanding of complex biochemical relations 20 tables for quick access to precise data 100 key equations Challenging self-study problems within each chapter Conveys Human Progress in the Manipulation of Genomes at the Molecular Level In response to growing global interest in biotechnology, this valuable text sheds light on the evolutionary theories and future trends in genetic medicine and stem cell research. It provides a broader knowledge base on life-permitting complexities, illustrates how to model them quantitatively, and demonstrates how to manipulate them in genomic-based medicine and genetic engineering. Consequently, this book allows for a greater appreciation among of the incredible complexity of the biochemica
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|