Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This is a new type of calculus book: Students who master this text will be well versed in calculus and, in addition, possess a useful working knowledge of how to use modern symbolic mathematics software systems for solving problems in calculus. This will equip them with the mathematical competence they need for science and engineering and the competitive workplace. MACSYMA is used as the software in which the example programs and calculations are given. However, by the experience gained in this book, the student will also be able to use any of the other major mathematical software systems, like for example AXIOM, MATHEMATICA, MAPLE, DERIVE or REDUCE, for "doing calculus on computers".
Homogenization is a fairly new, yet deep field of mathematics which is used as a powerful tool for analysis of applied problems which involve multiple scales. Generally, homogenization is utilized as a modeling procedure to describe processes in complex structures. Applications of Homogenization Theory to the Study of Mineralized Tissue functions as an introduction to the theory of homogenization. At the same time, the book explains how to apply the theory to various application problems in biology, physics and engineering. The authors are experts in the field and collaborated to create this book which is a useful research monograph for applied mathematicians, engineers and geophysicists. As for students and instructors, this book is a well-rounded and comprehensive text on the topic of homogenization for graduate level courses or special mathematics classes. Features: Covers applications in both geophysics and biology. Includes recent results not found in classical books on the topic Focuses on evolutionary kinds of problems; there is little overlap with books dealing with variational methods and T-convergence Includes new results where the G-limits have different structures from the initial operators
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
This book illustrates how MAPLE can be used to supplement a standard, elementary text in ordinary and partial differential equation. MAPLE is used with several purposes in mind. The authors are firm believers in the teaching of mathematics as an experimental science where the student does numerous calculations and then synthesizes these experiments into a general theory. Projects based on the concept of writing generic programs test a student's understanding of the theoretical material of the course. A student who can solve a general problem certainly can solve a specialized problem. The authors show MAPLE has a built-in program for doing these problems. While it is important for the student to learn MAPLES in built programs, using these alone removes the student from the conceptual nature of differential equations. The goal of the book is to teach the students enough about the computer algebra system MAPLE so that it can be used in an investigative way. The investigative materials which are present in the book are done in desk calculator mode DCM, that is the calculations are in the order command line followed by output line. Frequently, this approach eventually leads to a program or procedure in MAPLE designated by proc and completed by end proc. This book was developed through ten years of instruction in the differential equations course. Table of Contents 1. Introduction to the Maple DEtools 2. First-order Differential Equations 3. Numerical Methods for First Order Equations 4. The Theory of Second Order Differential Equations with Con- 5. Applications of Second Order Linear Equations 6. Two-Point Boundary Value Problems, Catalytic Reactors and 7. Eigenvalue Problems 8. Power Series Methods for Solving Differential Equations 9. Nonlinear Autonomous Systems 10. Integral Transforms Biographies Robert P. Gilbert holds a Ph.D. in mathematics from Carnegie Mellon University. He and Jerry Hile originated the method of generalized hyperanalytic function theory. Dr. Gilbert was professor at Indiana University, Bloomington and later became the Unidel Foundation Chair of Mathematics at the University of Delaware. He has published over 300 articles in professional journals and conference proceedings. He is the Founding Editor of two mathematics journals Complex Variables and Applicable Analysis. He is a three-time Awardee of the Humboldt-Preis, and. received a British Research Council award to do research at Oxford University. He is also the recipient of a Doctor Honoris Causa from the I. Vekua Institute of Applied Mathematics at Tbilisi State University. George C. Hsiao holds a doctorate degree in Mathematics from Carnegie Mellon University. Dr. Hsiao is the Carl J. Rees Professor of Mathematics Emeritus at the University of Delaware from which he retired after 43 years on the faculty of the Department of Mathematical Sciences. Dr. Hsiao was also the recipient of the Francis Alison Faculty Award, the University of Delaware's most prestigious faculty honor, which was bestowed on him in recognition of his scholarship, professional achievement and dedication. His primary research interests are integral equations and partial differential equations with their applications in mathematical physics and continuum mechanics. He is the author or co-author of more than 200 publications in books and journals. Dr. Hsiao is world-renowned for his expertise in Boundary Element Method and has given invited lectures all over the world. Robert J. Ronkese holds a PhD in applied mathematics from the University of Delaware. He is a professor of mathematics at the US Merchant Marine Academy on Long Island. As an undergraduate, he was an exchange student at the Swiss Federal Institute of Technology (ETH) in Zurich. He has held visiting positions at the US Military Academy at West Point and at the University of Central Florida in Orlando.
This book illustrates how MAPLE can be used to supplement a standard, elementary text in ordinary and partial differential equation. MAPLE is used with several purposes in mind. The authors are firm believers in the teaching of mathematics as an experimental science where the student does numerous calculations and then synthesizes these experiments into a general theory. Projects based on the concept of writing generic programs test a student's understanding of the theoretical material of the course. A student who can solve a general problem certainly can solve a specialized problem. The authors show MAPLE has a built-in program for doing these problems. While it is important for the student to learn MAPLES in built programs, using these alone removes the student from the conceptual nature of differential equations. The goal of the book is to teach the students enough about the computer algebra system MAPLE so that it can be used in an investigative way. The investigative materials which are present in the book are done in desk calculator mode DCM, that is the calculations are in the order command line followed by output line. Frequently, this approach eventually leads to a program or procedure in MAPLE designated by proc and completed by end proc. This book was developed through ten years of instruction in the differential equations course. Table of Contents 1. Introduction to the Maple DEtools 2. First-order Differential Equations 3. Numerical Methods for First Order Equations 4. The Theory of Second Order Differential Equations with Con- 5. Applications of Second Order Linear Equations 6. Two-Point Boundary Value Problems, Catalytic Reactors and 7. Eigenvalue Problems 8. Power Series Methods for Solving Differential Equations 9. Nonlinear Autonomous Systems 10. Integral Transforms Biographies Robert P. Gilbert holds a Ph.D. in mathematics from Carnegie Mellon University. He and Jerry Hile originated the method of generalized hyperanalytic function theory. Dr. Gilbert was professor at Indiana University, Bloomington and later became the Unidel Foundation Chair of Mathematics at the University of Delaware. He has published over 300 articles in professional journals and conference proceedings. He is the Founding Editor of two mathematics journals Complex Variables and Applicable Analysis. He is a three-time Awardee of the Humboldt-Preis, and. received a British Research Council award to do research at Oxford University. He is also the recipient of a Doctor Honoris Causa from the I. Vekua Institute of Applied Mathematics at Tbilisi State University. George C. Hsiao holds a doctorate degree in Mathematics from Carnegie Mellon University. Dr. Hsiao is the Carl J. Rees Professor of Mathematics Emeritus at the University of Delaware from which he retired after 43 years on the faculty of the Department of Mathematical Sciences. Dr. Hsiao was also the recipient of the Francis Alison Faculty Award, the University of Delaware's most prestigious faculty honor, which was bestowed on him in recognition of his scholarship, professional achievement and dedication. His primary research interests are integral equations and partial differential equations with their applications in mathematical physics and continuum mechanics. He is the author or co-author of more than 200 publications in books and journals. Dr. Hsiao is world-renowned for his expertise in Boundary Element Method and has given invited lectures all over the world. Robert J. Ronkese holds a PhD in applied mathematics from the University of Delaware. He is a professor of mathematics at the US Merchant Marine Academy on Long Island. As an undergraduate, he was an exchange student at the Swiss Federal Institute of Technology (ETH) in Zurich. He has held visiting positions at the US Military Academy at West Point and at the University of Central Florida in Orlando.
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
Homogenization is a fairly new, yet deep field of mathematics which is used as a powerful tool for analysis of applied problems which involve multiple scales. Generally, homogenization is utilized as a modeling procedure to describe processes in complex structures. Applications of Homogenization Theory to the Study of Mineralized Tissue functions as an introduction to the theory of homogenization. At the same time, the book explains how to apply the theory to various application problems in biology, physics and engineering. The authors are experts in the field and collaborated to create this book which is a useful research monograph for applied mathematicians, engineers and geophysicists. As for students and instructors, this book is a well-rounded and comprehensive text on the topic of homogenization for graduate level courses or special mathematics classes. Features: Covers applications in both geophysics and biology. Includes recent results not found in classical books on the topic Focuses on evolutionary kinds of problems; there is little overlap with books dealing with variational methods and T-convergence Includes new results where the G-limits have different structures from the initial operators
|
You may like...
|