![]() |
![]() |
Your cart is empty |
||
Showing 1 - 11 of 11 matches in All Departments
Carbon is light-weight, strong, conductive and able to mimic
natural materials within the body, making it ideal for many uses
within biomedicine. Consequently a great deal of research and
funding is being put into this interesting material with a view to
increasing the variety of medical applications for which it is
suitable. Diamond-based materials for biomedical applications
presents readers with the fundamental principles and novel
applications of this versatile material.
Biologically functional ceramic materials have been known about for several decades, like phosphate cements and gypsum, and they are within the zeroth generation. Modern and artificially synthesized bioceramics include amorphous materials in the Bioglass (R) family that were developed in the early 1970's and derivative glass ceramics such as Bioverit (R) and Cerabone A-W (R) that came in 1980's. They are from the 2nd generation of materials, and mostly applicable to bone replacement or bone defect fillers. Since the late 1990's, newer technologies have been introduced to the biologically functional material fields; they are the syntheses of organic-inorganic hybrids of micro- and macroscopic scales as well as nano-scales, organic fragment-covered ceramic particles of varied sizes, with light-controlling abilities to modify the frequency of light, in addition synthesis of high strength and high-tribological durability that had not been available before. With the advent of additive manufacturing technology employing lasers, electron beams, and printers, clinical materials of complicated porous structures are now easily prepared. These materials are of the 3rd generation. This book will cover almost all kinds of such 3rd generation ceramic and ceramic-related biomaterials. This book conveys the current state-of-the-art on the science and technology of bioceramics, from nano-size dots or particles to macro-scale architectures, of a wide range of constitutions including quantum dots with peptide fragments, meso-scale therapeutic particles designed to involve drugs or genes, mesoporous organic-inorganic hybrids, nano-structured oxide layers on metals and alloys.
Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing, Second Edition, provides a comprehensive review of emerging rapid prototyping technologies, such as bioprinting, for biomedical applications. Rapid prototyping, also known as additive manufacturing, solid freeform fabrication, or 3D printing, can be used to create complex structures and devices for medical applications from solid, powder or liquid precursors. Sections explore a variety of materials, look at applications, and consider the use of rapid prototyping technologies for constructing organs. With its distinguished editor and international team of renowned contributors, this book is a useful, technical resource for scientists and researchers in academia, biomaterials and tissue regeneration.
Recent studies have shown that novel processing and modeling techniques may be used to create patient-specific prostheses, artificial tissues, and other implants using data obtained from magnetic resonance imaging, computed tomography, or other imaging techniques. For example, customized prostheses may be fabricated that possess suitable features, including geometry, size, and weight, for a given medical condition. Many advances have been made in the development of patient-specific implants in the past decade, yet this information is not readily available to scientists and students. Printed Biomaterials: Novel Processing and Modeling Techniques for Medicine and Surgery provides the biomaterials scientist and engineer, as well as advanced undergraduate or graduate students, with a comprehensive discussion of contemporary medical implant research and development. The development of printed biomaterials is multidisciplinary, and includes concepts traditionally associated with engineering, materials science, medicine, and surgery. This text highlights important topics in these core fields in order to provide the fundamentals necessary to comprehend current processing and modeling technologies and to develop new ones.
Biomedical Materials provides a comprehensive discussion of contemporary biomaterials research and development. Highlighting important topics associated with Engineering, Medicine and Surgery, this volume reaches a wide scope of professionals, researchers and graduate students involved with biomaterials. A pedagogical writing style and structure provides readers with an understanding of the fundamental concepts necessary to pursue research and industrial work on biomaterials, including characteristics of biomaterials, biological processes, biocompatibility, and applications of biomaterials in implants and medical instruments. Written by leading researchers in the field, this text book takes readers to the forefront of biomedical materials development, providing them with a taste of how the field is changing, while also serving as a useful reference to physicians and engineers.
Encyclopedia of Biomedical Engineering, Three Volume Set is a unique source for rapidly evolving updates on topics that are at the interface of the biological sciences and engineering. Biomaterials, biomedical devices and techniques play a significant role in improving the quality of health care in the developed world. The book covers an extensive range of topics related to biomedical engineering, including biomaterials, sensors, medical devices, imaging modalities and imaging processing. In addition, applications of biomedical engineering, advances in cardiology, drug delivery, gene therapy, orthopedics, ophthalmology, sensing and tissue engineering are explored. This important reference work serves many groups working at the interface of the biological sciences and engineering, including engineering students, biological science students, clinicians, and industrial researchers.
Monitoring and Evaluation of Biomaterials and Their Performance In Vivo provides essential information for scientists and researchers who need to assess and evaluate performance, monitor biological responses, gauge efficacy, and observe changes over time. Crucially, it also enables the optimization of design for future biomaterials and implants. This book presents readers with comprehensive coverage of the topic of in vivo monitoring of medical implants and biomaterials.
Nanobiomaterials: Nanostructured materials for biomedical applications covers an extensive range of topics related to the processing, characterization, modeling, and biomedical applications of nanostructured ceramics, polymers, metals, composites, self-assembled materials, and macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted. In addition, innovative techniques for characterizing the in vitro behavior and in vivo behavior of nanostructured biomaterials are considered. Applications of nanostructured biomaterials in dentistry, drug delivery, medical diagnostics, surgery and tissue engineering are examined.
Biomedical Materials provides a comprehensive discussion of contemporary biomaterials research and development. Highlighting important topics associated with Engineering, Medicine and Surgery, this volume reaches a wide scope of professionals, researchers and graduate students involved with biomaterials. A pedagogical writing style and structure provides readers with an understanding of the fundamental concepts necessary to pursue research and industrial work on biomaterials, including characteristics of biomaterials, biological processes, biocompatibility, and applications of biomaterials in implants and medical instruments. Written by leading researchers in the field, this text book takes readers to the forefront of biomedical materials development, providing them with a taste of how the field is changing, while also serving as a useful reference to physicians and engineers.
Recent advances in the processing of microstructured and nanostructured materials are finding application in medical diagnosis and treatment. For example, novel building blocks for bottom-up assembly of biomaterials are being designed that will simplify development of nanostructured materials. In addition, functional biomaterials are being developed that exhibit unique interactions with proteins, nucleic acids, and other biological structures. This book brings together a diverse group of materials researchers, medical device manufacturers and clinicians to discuss the use of novel techniques for processing metals, ceramics, polymers, natural materials and composite materials used in diagnosis and treatment of medical conditions. Topics include: processing of biomimetic materials; materials for bio-imaging; functional biomaterials; nanoparticles for medical diagnosis and treatment; novel materials and devices for drug delivery and biosensing; scaffolds for tissue engineering; self-assembled biomaterials; and surface modification of biomaterials.
Due to the rapid advances over the past few years in the field of
rapid prototyping, the crucial information for researchers in the
field is scattered throughout numerous journals and thus not
readily available. This carefully compiled collection of selected
articles from the top Wiley-Blackwell journals on the topic of
rapid prototyping provides the fundamentals necessary to comprehend
current rapid prototyping technologies while also developing new
ones.
|
![]() ![]() You may like...
|