Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene't from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr] odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier-Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve 'constructively' the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics, includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations."
The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.
Addressing algebraic problems found in biomathematics and energy, Free and Moving Boundaries: Analysis, Simulation and Control discusses moving boundary and boundary control in systems described by partial differential equations (PDEs). With contributions from international experts, the book emphasizes numerical and theoretical control of moving boundaries in fluid structure couple systems, arteries, shape stabilization level methods, family of moving geometries, and boundary control. Using numerical analysis, the contributors examine the problems of optimal control theory applied to PDEs arising from continuum mechanics. The book presents several applications to electromagnetic devices, flow, control, computing, images analysis, topological changes, and free boundaries. It specifically focuses on the topics of boundary variation and control, dynamical control of geometry, optimization, free boundary problems, stabilization of structures, controlling fluid-structure devices, electromagnetism 3D, and inverse problems arising in areas such as biomathematics. Free and Moving Boundaries: Analysis, Simulation and Control explains why the boundary control of physical systems can be viewed as a moving boundary control, empowering the future research of select algebraic areas.
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems," originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.
The behaviour of systems occurring in real life is often modelled by partial differential equations. This book investigates how a user or observer can influence the behaviour of such systems mathematically and computationally. A thorough mathematical analysis of controllability problems is combined with a detailed investigation of methods used to solve them numerically, these methods being validated by the results of numerical experiments. In Part I of the book the authors discuss the mathematics and numerics relating to the controllability of systems modelled by linear and non-linear diffusion equations; Part II is dedicated to the controllability of vibrating systems, typical ones being those modelled by linear wave equations; finally, Part III covers flow control for systems governed by the Navier-Stokes equations modelling incompressible viscous flow. The book is accessible to graduate students in applied and computational mathematics, engineering and physics; it will also be of use to more advanced practitioners.
One of the most challenging problems of modern engineering is undoubtedly the prediction of hypersonic flows around space vehicles in reentry conditions. Indeed, the difficulties are numerous: first of all, these flows are very difficult to model, since very complex physical and chemical phenomena take place during the reentry phase; secondly, temperature, velocity and enthalpy are very high and densities are very low, making the reentry process very difficult to reproduce in ground-based experiments. The past three decades have seen important efforts in computational fluid dynam ics relying on the use of supercomputers to simulate these very complicated flows. The numerical simulation based on imperfect models and methods which were es sentially designed for transonic and supersonic flows has still a long way to go in order to be able to predict these hypersonic reentry flows very accurately. This situation has motivated very strong international cooperative efforts with, as the most visible consequences, the EuropelUnited States Short Courses on Hy personics, which were held in Paris, in 1987 [1,2], Colorado Springs in 1989 [3], and Aachen in 1990 [3]. The workshop on Hypersonics whose results are presented and analysed in these volumes is also a direct consequence of this international cooperation. This scien tific event was an initiative of P. Perrier, Head of the Theoretical Aerodynamics Department of DASSAULT AVIATION, who played a key role in the identification of the critical problems and the realisation of experiments, within the Hermes R&D program framework.
For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene't from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr] odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier-Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve 'constructively' the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics, includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations."
A large international conference on High Performance Computing and its - plications was held in Shanghai, China, August 8-10, 2004. It served as a forum to present current work by researchers and software developers from around the world as well as to highlight activities in the high performance computing area. It aimed to bring together research scientists, application - oneers, andsoftwaredeveloperstodiscussproblemsandsolutionsandtoid- tify new issues in this area. The conference focused on the design and analysis of high performance computing algorithms, tools, and platforms and their s- enti?c, engineering, medical, and industrial applications. It drew about 150 participants from Canada, China, Germany, India, Iran, Japan, Mexico, S- gapore, South Korea, the United Kingdom, and the United States of America. More than 170 papers were received on a variety of subjects in modern high performance computing and its applications, such as numerical and software algorithm design and analysis, grid computing advance, adaptive and par- lel algorithm development, distributing debugging tools, computational grid and network environment design, computer simulation and visualization, and computational language study and their applications to science, engineering, and medicine. This book contains ninety papers that are representative in these subjects. It serves as an excellent research reference for graduate s- dents, scientists, and engineers who work with high performance computing for problems arising in science, engineering, and medicine. This conference would not have been possible without the support of a number of organizations and agencies and the assistance of many people
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
Addressing algebraic problems found in biomathematics and energy, Free and Moving Boundaries: Analysis, Simulation and Control discusses moving boundary and boundary control in systems described by partial differential equations. With contributions from international experts, the book emphasizes numerical and theoretical control of moving boundaries in fluid structure couple systems, arteries, shape stabilization level methods, family of moving geometries, and boundary control. Using numerical analysis, the contributors examine the problems of optimal control theory applied to partial differential equations arising from continuum mechanics. The book presents several applications to electromagnetic devices, flow, control, computing, images analysis, topological changes, and free boundaries. It specifically focuses on the topics of boundary variation and control, dynamical control of geometry, optimization, free boundary problems, stabilization of structures, controlling fluid-structure devices, electromagnetism 3D, and inverse problems arising in areas such as biomathematics.Free and Moving Boundaries: Analysis, Simulation and Control explains why the boundary control of physical systems can be viewed as a moving boundary control, empowering the future research of select algebraic areas.
|
You may like...
The Four Horsemen - The Discussion That…
Richard Dawkins, Sam Harris, …
Hardcover
(3)
Knowledge, Innovation and Economic…
Frans Boekema, Kevin Morgan, …
Hardcover
R3,382
Discovery Miles 33 820
Global Implications of Emerging…
Francisco Jose Garcia-Penalvo
Hardcover
R4,893
Discovery Miles 48 930
|