Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Aiding Decisions With Multiple Criteria: Essays in Honor of Bernard Roy is organized around two broad themes: * Graph Theory with path-breaking contributions on the theory of flows in networks and project scheduling, * Multiple Criteria Decision Aiding with the invention of the family of ELECTRE methods and methodological contribution to decision-aiding which lead to the creation of Multi-Criteria Decision Analysis (MCDA). Professor Bernard Roy has had considerable influence on the development of these two broad areas. GBP/LISTGBP Part one contains papers by Jacques Lesourne, and Dominique de Werra & Pierre Hansen related to the early career of Bernard Roy when he developed many new techniques and concepts in Graph Theory in order to cope with complex real-world problems. Part two of the book is devoted to Philosophy and Epistemology of Decision-Aiding with contributions from Valerie Belton & Jacques Pictet and Jean-Luis Genard & Marc Pirlot. Part three includes contributions based on Theory and Methodology of Multi-Criteria Decision-Aiding based on a general framework for conjoint measurement that allows intrasitive preferences. Denis Bouyssou & Marc Pirlot; Alexis Tsoukias, Patrice Perny & Philippe Vincke; Luis Dias & Joao Climaco; Daniel Vanderpooten; Michael Doumpos & Constantin Zopounidis; and Marc Roubens offer a considerable range of examinations of this aspect of MCDA. Part four is devoted to Perference Modeling with contributions from Peter Fishburn; Salvatore Greco, Benedetto Matarazzo & Roman Slowinski; Salem Benferhat, Didier Dubois & Henri Prade; Oscar Franzese & Mark McCord; Bertrand Munier; and Raymond Bisdorff. Part five groups Applications of Multi-Criteria Decision-Aiding, and Carlos Henggeler Antunes, Carla Oliveira & Joao Climaco; Carlos Bana e Costa, Manuel da Costa-Lobo, Isabel Ramos & Jean-Claude Vansnick; Yannis Siskos & Evangelos Grigoroudis; Jean-Pierre Brans, Pierre Kunsch & Bertrand Mareschal offer a wide variety of application problems. Finally, Part six includes contributions on Multi-Objective Mathematical Programming from Jacques Teghem, Walter Habenicht and Pekka Korhonen.
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: * Decision Making, * Mathematical Programming, * Statistics and Data Analysis, and * Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter.As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
Aiding Decisions With Multiple Criteria: Essays in Honor of Bernard Roy is organized around two broad themes: * Graph Theory with path-breaking contributions on the theory of flows in networks and project scheduling, * Multiple Criteria Decision Aiding with the invention of the family of ELECTRE methods and methodological contribution to decision-aiding which lead to the creation of Multi-Criteria Decision Analysis (MCDA). Professor Bernard Roy has had considerable influence on the development of these two broad areas. GBP/LISTGBP Part one contains papers by Jacques Lesourne, and Dominique de Werra & Pierre Hansen related to the early career of Bernard Roy when he developed many new techniques and concepts in Graph Theory in order to cope with complex real-world problems. Part two of the book is devoted to Philosophy and Epistemology of Decision-Aiding with contributions from Valerie Belton & Jacques Pictet and Jean-Luis Genard & Marc Pirlot. Part three includes contributions based on Theory and Methodology of Multi-Criteria Decision-Aiding based on a general framework for conjoint measurement that allows intrasitive preferences. Denis Bouyssou & Marc Pirlot; Alexis Tsoukias, Patrice Perny & Philippe Vincke; Luis Dias & Joao Climaco; Daniel Vanderpooten; Michael Doumpos & Constantin Zopounidis; and Marc Roubens offer a considerable range of examinations of this aspect of MCDA. Part four is devoted to Perference Modeling with contributions from Peter Fishburn; Salvatore Greco, Benedetto Matarazzo & Roman Slowinski; Salem Benferhat, Didier Dubois & Henri Prade; Oscar Franzese & Mark McCord; Bertrand Munier; and Raymond Bisdorff. Part five groups Applications of Multi-Criteria Decision-Aiding, and Carlos Henggeler Antunes, Carla Oliveira & Joao Climaco; Carlos Bana e Costa, Manuel da Costa-Lobo, Isabel Ramos & Jean-Claude Vansnick; Yannis Siskos & Evangelos Grigoroudis; Jean-Pierre Brans, Pierre Kunsch & Bertrand Mareschal offer a wide variety of application problems. Finally, Part six includes contributions on Multi-Objective Mathematical Programming from Jacques Teghem, Walter Habenicht and Pekka Korhonen.
This book constitutes the refereed proceedings of the 8th International Conference on Rough Sets and Current Trends in Computing, RSCTC, held in Chengdu, China, in August 2012, as one of the co-located conferences of the 2012 Joint Rough Set Symposium, JRS 2012. The 55 revised full papers presented together with one keynote paper were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on rough sets and its applications; current trends in computing; decision-theoretic rough set model and applications; formal concept analysis and granular computing; mining complex data with granular computing; data mining competition.
Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Together with volume VI of the Transactions on Rough Sets series, this book commemorates the life and work of Zdzislaw Pawlak (1926-2006). It presents papers that reflect the profound influence of a number of research initiatives by Professor Pawlak, introducing a number of advances in the foundations and applications of AI, engineering, logic, mathematics, and science, which have had significant implications in a number of research areas.
This book constitutes the refereed proceedings of the 5th International Conference on Rough Sets and Current Trends in Computing, RSCTC 2006, held in Kobe, Japan in November 2006. The 91 revised full papers presented together with 5 invited papers and 2 commemorative papers were carefully reviewed and selected from 332 submissions. The papers are organized in topical sections on logics in rough sets, logics in fuzzy sets, fuzzy-rough hybridization, approximate and uncertain reasoning, variable precision rough set models, incomplete/nondeterministic information systems, decision support, multi-criteria decision support, rough sets in KDD, rough sets in medicine, granular computing, grey systems, ontology and mereology, statistical methods, machine learning, clustering, data mining, evolutionary computing, intelligent information systems, pattern recognition and image processing, as well as data clustering: algorithms and applications.
In recent years rough set theory has attracted the attention of many researchers and practitioners all over the world, who have contributed essentially to its development and applications. Weareobservingagrowingresearchinterestinthefoundationsofroughsets, including the various logical, mathematical and philosophical aspects of rough sets. Some relationships have already been established between rough sets and other approaches, and also with a wide range of hybrid systems. As a result, rough sets are linked with decision system modeling and analysis of complex systems, fuzzy sets, neural networks, evolutionary computing, data mining and knowledge discovery, pattern recognition, machine learning, and approximate reasoning. In particular, rough sets are used in probabilistic reasoning, granular computing (including information granule calculi based on rough mereology), intelligent control, intelligent agent modeling, identi?cation of autonomous s- tems, and process speci?cation. Methods based on rough set theory alone or in combination with other - proacheshavebeendiscoveredwith awide rangeofapplicationsinsuchareasas: acoustics, bioinformatics, business and ?nance, chemistry, computer engineering (e.g., data compression, digital image processing, digital signal processing, p- allel and distributed computer systems, sensor fusion, fractal engineering), de- sion analysis and systems, economics, electrical engineering (e.g., control, signal analysis, power systems), environmental studies, informatics, medicine, mole- lar biology, musicology, neurology, robotics, social science, software engineering, spatial visualization, Web engineering, and Web mining.
|
You may like...
|