0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Scaling up Machine Learning - Parallel and Distributed Approaches (Paperback): Ron Bekkerman, Mikhail Bilenko, John Langford Scaling up Machine Learning - Parallel and Distributed Approaches (Paperback)
Ron Bekkerman, Mikhail Bilenko, John Langford
R1,422 Discovery Miles 14 220 Ships in 12 - 17 working days

This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.

Scaling up Machine Learning - Parallel and Distributed Approaches (Hardcover): Ron Bekkerman, Mikhail Bilenko, John Langford Scaling up Machine Learning - Parallel and Distributed Approaches (Hardcover)
Ron Bekkerman, Mikhail Bilenko, John Langford
R2,643 Discovery Miles 26 430 Ships in 12 - 17 working days

This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Marco Cellphone Ring & Stand [Black]
R59 R29 Discovery Miles 290
Pritt Wood & Craft Glue (100ml)
R43 Discovery Miles 430
Dog's Life Ballistic Nylon Waterproof…
R999 R808 Discovery Miles 8 080
Salton S1I260 Perfect Temperature Iron…
R269 R252 Discovery Miles 2 520
Kookaburra Oversized Cooler Chair (Blue)
R900 R599 Discovery Miles 5 990
Frozen - Blu-Ray + DVD
Blu-ray disc R330 Discovery Miles 3 300
Reebok Dumbbell - 5Kg
R485 R405 Discovery Miles 4 050
Clean Clean Rain Eau De Parfum Spray…
R1,841 R1,062 Discovery Miles 10 620
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier Paperback R340 R266 Discovery Miles 2 660

 

Partners