0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Frontiers and Challenges in Warm Dense Matter (Paperback, Softcover reprint of the original 1st ed. 2014): Frank Graziani,... Frontiers and Challenges in Warm Dense Matter (Paperback, Softcover reprint of the original 1st ed. 2014)
Frank Graziani, Michael P. Desjarlais, Ronald Redmer, Samuel B. Trickey
R5,358 Discovery Miles 53 580 Ships in 10 - 15 working days

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.

Frontiers and Challenges in Warm Dense Matter (Hardcover, 2014): Frank Graziani, Michael P. Desjarlais, Ronald Redmer, Samuel... Frontiers and Challenges in Warm Dense Matter (Hardcover, 2014)
Frank Graziani, Michael P. Desjarlais, Ronald Redmer, Samuel B. Trickey
R5,606 Discovery Miles 56 060 Ships in 10 - 15 working days

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.

Metal-to-Nonmetal Transitions (Paperback, 2010 ed.): Ronald Redmer, Friedrich Hensel, Bastian Holst Metal-to-Nonmetal Transitions (Paperback, 2010 ed.)
Ronald Redmer, Friedrich Hensel, Bastian Holst
R2,929 Discovery Miles 29 290 Ships in 10 - 15 working days

This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work. A common feature of all contribution is the extensive discussion of bound states," i.e. their formation and dissolution due to medium effects. This applies to atoms and molecules in plasmas, fluids, and small clusters, excitons in semiconductors, or nucleons, deuterons, and alpha-particles in nuclear matter. In this way, the transition from delocalized to localized states and vice versa can be described on a common level."

Metal-to-Nonmetal Transitions (Hardcover, 2010 Ed.): Ronald Redmer, Friedrich Hensel, Bastian Holst Metal-to-Nonmetal Transitions (Hardcover, 2010 Ed.)
Ronald Redmer, Friedrich Hensel, Bastian Holst
R2,970 Discovery Miles 29 700 Ships in 10 - 15 working days

This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work. A common feature of all contribution is the extensive discussion of bound states," i.e. their formation and dissolution due to medium effects. This applies to atoms and molecules in plasmas, fluids, and small clusters, excitons in semiconductors, or nucleons, deuterons, and alpha-particles in nuclear matter. In this way, the transition from delocalized to localized states and vice versa can be described on a common level."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
Shield Fresh 24 Mist Spray (Vanilla…
R19 Discovery Miles 190
Catan
 (16)
R1,150 R887 Discovery Miles 8 870
Efekto 77300-G Nitrile Gloves (L)(Green)
R63 Discovery Miles 630
Shield Anti Freeze/Summer Cooolant 96…
R86 Discovery Miles 860
Butterfly A4 160gsm Board Pad - Designer…
R70 Discovery Miles 700
Bostik Clear on Blister Card (25ml)
R38 Discovery Miles 380
Cable Guys Controller and Smartphone…
R399 R349 Discovery Miles 3 490
Kingston Technology DataTraveler Exodia…
 (1)
R106 Discovery Miles 1 060

 

Partners