Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
A collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. This welcome reference for many new results and recent methods is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory.
When the DFG (Deutsche Forschungsgemeinschaft) launched its collabora tive research centre or SFB (Sonderforschungsbereich) 438 "Mathematical Modelling, Simulation, and Verification in Material-Oriented Processes and Intelligent Systems" in July 1997 at the Technische Vniversitat Munchen and at the Vniversitat Augsburg, southern Bavaria got its second nucleus of the still young discipline scientific computing. Whereas the first and older one, FORTWIHR, the Bavarian Consortium for High Performance Scientific Com puting, had put its main emphasis on the supercomputing aspect, this new initiative was now expected to focus on the mathematical part. Consequently, throughout all of the five main research topics (A) adaptive materials and thin layers, (B) adaptive materials in medicine, (C) robotics, aeronautics, and automobile technology, (D) microstructured devices and systems, and (E) transport processes in flows, mathematical aspects play a predominant role. The formation of the SFB 438 and its scientific program are inextricably linked with the name of Karl-Heinz Hoffmann. As full professor for applied mathematics in Augsburg (1981-1991) and in Munchen (since 1992) and as dean of the faculty of mathematics at the TV Munchen, he was the driv ing force of this fascinating, but not always easy-to-realize idea of bringing together scientists from mathematics, physics, engineering, informatics, and medicine for joint efforts in modern applied mathematics. However, scarcely work had begun when the successful captain was called to take command on a bigger boat."
Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues, complex heterogeneous problems, industrial problems, and software development.
The contributions in this book by leading international experts in the field of electromagnetic field computation cover a wide area of contemporary research activities. They clearly underline the important role of modeling, analysis and numerical methods to provide powerful tools for the simulation of electromagnetic phenomena. The main topics range from the mathematical analysis of Maxwell's equations including its proper spatial discretizations (edge elements, boundary element methods, finite integration), and efficient iterative solution techniques (multigrid, domain decomposition) to multiscale aspects in micromagnetics. The reader will get acquainted with many facets of modern computational techniques and its applications to relevant problems in electromagnetism.
A collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. This welcome reference for many new results and recent methods is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory.
Dieses Numerik-Lehrbuch hat sich seit seinem Erscheinen zu einem Standardwerk der Numerischen Mathematik entwickelt und wird in zahlreichen Lehrveranstaltungen zur Einfuhrung in die Numerik als Begleittext verwendet. Der Erfolg dieses Lehrbuchs liegt in der Verbindung analytischer Strenge in der Prasentation der grundlegenden Prinzipien der Numerischen Mathematik und praktischer Anwendung durch Bereitstellung und Diskussion fundamentaler algorithmischer Werkzeuge. Die in den vergangenen Jahren in den Bereichen der Numerik und des Wissenschaftlichen Rechnens erfolgte Entwicklung neuer Methodologien und daraus resultierender numerischer Verfahren erfordert eine adaquate Anpassung der Darstellung der Grundlagen, die Aufnahme neuer algorithmischer Techniken sowie eine kritische Beurteilung existenter Methoden. Dies ist durch die vorliegende Neubearbeitung dieses Lehrbuchs geschehen."
|
You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
|