![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Mathematical morphology (MM) is a powerful methodology for the quantitative analysis of geometrical structures. It consists of a broad and coherent collection of theoretical concepts, nonlinear signal operators, and algorithms aiming at extracting, from images or other geometrical objects, information related to their shape and size. Its mathematical origins stem from set theory, lattice algebra, and integral and stochastic geometry. MM was initiated in the late 1960s by G. Matheron and J. Serra at the Fontainebleau School of Mines in France. Originally it was applied to analyzing images from geological or biological specimens. However, its rich theoretical framework, algorithmic efficiency, easy implementability on special hardware, and suitability for many shape- oriented problems have propelled its widespread diffusion and adoption by many academic and industry groups in many countries as one among the dominant image analysis methodologies. The purpose of Mathematical Morphology and its Applications to Image and Signal Processing is to provide the image analysis community with a sampling from the current developments in the theoretical (deterministic and stochastic) and computational aspects of MM and its applications to image and signal processing. The book consists of the papers presented at the ISMM'96 grouped into the following themes: Theory Connectivity Filtering Nonlinear System Related to Morphology Algorithms/Architectures Granulometries, Texture Segmentation Image Sequence Analysis Learning Document Analysis Applications
Mathematical morphology (MM) is a powerful methodology for the quantitative analysis of geometrical structures. It consists of a broad and coherent collection of theoretical concepts, nonlinear signal operators, and algorithms aiming at extracting, from images or other geometrical objects, information related to their shape and size. Its mathematical origins stem from set theory, lattice algebra, and integral and stochastic geometry. MM was initiated in the late 1960s by G. Matheron and J. Serra at the Fontainebleau School of Mines in France. Originally it was applied to analyzing images from geological or biological specimens. However, its rich theoretical framework, algorithmic efficiency, easy implementability on special hardware, and suitability for many shape- oriented problems have propelled its widespread diffusion and adoption by many academic and industry groups in many countries as one among the dominant image analysis methodologies. The purpose of Mathematical Morphology and its Applications to Image and Signal Processing is to provide the image analysis community with a sampling from the current developments in the theoretical (deterministic and stochastic) and computational aspects of MM and its applications to image and signal processing. The book consists of the papers presented at the ISMM'96 grouped into the following themes: Theory Connectivity Filtering Nonlinear System Related to Morphology Algorithms/Architectures Granulometries, Texture Segmentation Image Sequence Analysis Learning Document Analysis Applications
|
You may like...
Trellises and Trellis-Based Decoding…
Shu Lin, Tadao Kasami, …
Hardcover
R4,172
Discovery Miles 41 720
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Advances in Collective Decision Making…
Sascha Kurz, Nicola Maaser, …
Hardcover
R4,640
Discovery Miles 46 400
Lectures on Hyperhamiltonian Dynamics…
Giuseppe Gaeta, Miguel A Rodriguez
Hardcover
R2,455
Discovery Miles 24 550
Vibration Problems ICOVP 2011 - The 10th…
Jiri Naprstek, Jaromir Horacek, …
Hardcover
R7,812
Discovery Miles 78 120
|