0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (5)
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 9 of 9 matches in All Departments

Finance with Monte Carlo (Paperback, Softcover reprint of the original 1st ed. 2013): Ronald W. Shonkwiler Finance with Monte Carlo (Paperback, Softcover reprint of the original 1st ed. 2013)
Ronald W. Shonkwiler
R2,556 Discovery Miles 25 560 Ships in 10 - 15 working days

This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications. The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications. Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Levy alternative models, and the Kelly criterion for maximizing investment growth. Novel features: inclusion of both portfolio theory and contingent claim analysis in a single text pricing methodology for exotic options expectation analysis of option trading strategies pricing models that transcend the Black-Scholes framework optimizing investment allocations concepts thoroughly explored through numerous simulation exercises numerous worked examples and illustrations The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. Also by the author: (with F. Mendivil) Explorations in Monte Carlo, (c)2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, (c)2009, ISBN: 978-0-387-70983-3.

Explorations in Monte Carlo Methods (Paperback, 2009 ed.): Ronald W. Shonkwiler, Franklin Mendivil Explorations in Monte Carlo Methods (Paperback, 2009 ed.)
Ronald W. Shonkwiler, Franklin Mendivil
R1,672 Discovery Miles 16 720 Ships in 10 - 15 working days

Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.

Mathematical Biology - An Introduction with Maple and Matlab (Paperback, 2nd ed. 2009): Ronald W. Shonkwiler, James Herod Mathematical Biology - An Introduction with Maple and Matlab (Paperback, 2nd ed. 2009)
Ronald W. Shonkwiler, James Herod
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. For- nately there are plenty of interesting problems (and fun) in biology, and virtually all scienti?c disciplines have become the richer for it. For example, two major journals, MathematicalBiosciences andJournalofMathematicalBiology, have tripled in size since their inceptions 20-25 years ago. More recently, the advent of genomics has spawned whole new ?elds of study in thebiosciences,?eldssuchasproteomics,comparativegenomics,genomicmedicine, pharmacogenomics, and structural genomics among them. These new disciplines are as much mathematical as biological. Thevariousscienceshaveagreatdealtogivetooneanother, buttherearestilltoo many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but that it has a unity of its own, in which both biology and mathematics should be equal, complete, and ?ow smoothly into and out of one another. There is a timeliness in calculating a protocol for administering a drug. Likewise, the signi?cance of bones being "sinks" for lead accumulation while bonemeal is being sold as a dietary c- cium supplement adds new meaning to mathematics as alifescience. The dynamics of a compartmentalized system are classical; applications to biology can be novel. Exponential and logistic population growths are standard studies; the delay in the increaseofAIDScasesbehindtheincreaseintheHIV-positivepopulationisprovo- tive.

Finance with Monte Carlo (Hardcover, 2013 ed.): Ronald W. Shonkwiler Finance with Monte Carlo (Hardcover, 2013 ed.)
Ronald W. Shonkwiler
R3,624 Discovery Miles 36 240 Ships in 10 - 15 working days

This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications. The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications. Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Levy alternative models, and the Kelly criterion for maximizing investment growth. Novel features: inclusion of both portfolio theory and contingent claim analysis in a single text pricing methodology for exotic options expectation analysis of option trading strategies pricing models that transcend the Black-Scholes framework optimizing investment allocations concepts thoroughly explored through numerous simulation exercises numerous worked examples and illustrations The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. Also by the author: (with F. Mendivil) Explorations in Monte Carlo, (c)2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, (c)2009, ISBN: 978-0-387-70983-3.

An Introduction to the Mathematics of Biology: with Computer Algebra Models (Paperback, Softcover reprint of the original 1st... An Introduction to the Mathematics of Biology: with Computer Algebra Models (Paperback, Softcover reprint of the original 1st ed. 1996)
Edward K. Yeargers, James V. Herod, Ronald W. Shonkweiler
R1,593 Discovery Miles 15 930 Ships in 10 - 15 working days

Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy in mind and have seen profound changes in the outlooks of our science and engineering students: The attitude of "Oh no, another pendulum on a spring problem ," or "Yet one more LCD circuit " completely disappeared in the face of applications of mathematics in biology. There is a timeliness in calculating a protocol for ad ministering a drug."

Mathematical Biology - An Introduction with Maple and Matlab (Hardcover, 2nd ed. 2009): Ronald W. Shonkwiler, James Herod Mathematical Biology - An Introduction with Maple and Matlab (Hardcover, 2nd ed. 2009)
Ronald W. Shonkwiler, James Herod
R3,060 Discovery Miles 30 600 Ships in 10 - 15 working days

Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. For- nately there are plenty of interesting problems (and fun) in biology, and virtually all scienti?c disciplines have become the richer for it. For example, two major journals, MathematicalBiosciences andJournalofMathematicalBiology, have tripled in size since their inceptions 20-25 years ago. More recently, the advent of genomics has spawned whole new ?elds of study in thebiosciences, ?eldssuchasproteomics, comparativegenomics, genomicmedicine, pharmacogenomics, and structural genomics among them. These new disciplines are as much mathematical as biological. Thevariousscienceshaveagreatdealtogivetooneanother, buttherearestilltoo many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but that it has a unity of its own, in which both biology and mathematics should be equal, complete, and ?ow smoothly into and out of one another. There is a timeliness in calculating a protocol for administering a drug. Likewise, the signi?cance of bones being "sinks'' for lead accumulation while bonemeal is being sold as a dietary c- cium supplement adds new meaning to mathematics as alifescience. The dynamics of a compartmentalized system are classical; applications to biology can be novel. Exponential and logistic population growths are standard studies; the delay in the increaseofAIDScasesbehindtheincreaseintheHIV-positivepopulationisprovo- tive.

Explorations in Monte Carlo Methods (Hardcover, 2009 ed.): Ronald W. Shonkwiler, Franklin Mendivil Explorations in Monte Carlo Methods (Hardcover, 2009 ed.)
Ronald W. Shonkwiler, Franklin Mendivil
R1,698 Discovery Miles 16 980 Ships in 10 - 15 working days

Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems.

Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.

An Introduction to Parallel and Vector Scientific Computation (Hardcover, New): Ronald W. Shonkwiler, Lew Lefton An Introduction to Parallel and Vector Scientific Computation (Hardcover, New)
Ronald W. Shonkwiler, Lew Lefton
R2,164 Discovery Miles 21 640 Ships in 10 - 15 working days

In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.

An Introduction to Parallel and Vector Scientific Computation (Paperback): Ronald W. Shonkwiler, Lew Lefton An Introduction to Parallel and Vector Scientific Computation (Paperback)
Ronald W. Shonkwiler, Lew Lefton
R1,450 Discovery Miles 14 500 Ships in 10 - 15 working days

In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Heroes: The Complete Series 3
Hayden Panettiere, Jack Coleman, … Blu-ray disc  (1)
R60 Discovery Miles 600
Swiss Miele Vacuum Bags (4 x Bags | 2 x…
 (8)
R199 R166 Discovery Miles 1 660
Sony PlayStation 5 DualSense Wireless…
 (5)
R1,599 R1,479 Discovery Miles 14 790
MyNotes A5 Rainbow Bands Notebook
Paperback R50 R42 Discovery Miles 420
Puzzle Sets: Sequencing
R59 R56 Discovery Miles 560
Magic Of The Violin
Andre Rieu CD  (2)
R130 Discovery Miles 1 300
Lovense USB Bluetooth Adapter flash…
R499 Discovery Miles 4 990
Too Beautiful To Break
Tessa Bailey Paperback R280 R224 Discovery Miles 2 240
Return Of The Dream Canteen
Red Hot Chili Peppers CD R185 R112 Discovery Miles 1 120
Cable Guys Controller and Smartphone…
R399 R359 Discovery Miles 3 590

 

Partners