Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book is one of its own kind. It is not an encyclopedia or a hands-on tutorial that traps readers in the tutorial-hell. It is a distillation of just one common Python user’s learning experience. The experience is packaged with exceptional teaching techniques, careful dependence unraveling and most importantly, passion. Learning Advanced Python by Studying Open Source Projects helps readers overcome the difficulty in their day-to-day tasks and seek insights from solutions in famous open source projects. Different from a technical manual, this book mixes the technical knowledge, real-world applications and more theoretical content, providing readers with a practical and engaging approach to learning Python. Throughout the book, readers will learn how to write Python code that is efficient, readable, and maintainable, covering key topics such as data structures, algorithms, object-oriented programming, and more. The author's passion for Python shines through in the book, making it an enjoyable and inspiring read for both beginners and experienced programmers.
This book is one of its own kind. It is not an encyclopedia or a hands-on tutorial that traps readers in the tutorial-hell. It is a distillation of just one common Python user’s learning experience. The experience is packaged with exceptional teaching techniques, careful dependence unraveling and most importantly, passion. Learning Advanced Python by Studying Open Source Projects helps readers overcome the difficulty in their day-to-day tasks and seek insights from solutions in famous open source projects. Different from a technical manual, this book mixes the technical knowledge, real-world applications and more theoretical content, providing readers with a practical and engaging approach to learning Python. Throughout the book, readers will learn how to write Python code that is efficient, readable, and maintainable, covering key topics such as data structures, algorithms, object-oriented programming, and more. The author's passion for Python shines through in the book, making it an enjoyable and inspiring read for both beginners and experienced programmers.
Understand the theory and implementation of simulation. This book covers simulation topics from a scenario-driven approach using Python and rich visualizations and tabulations. The book discusses simulation used in the natural and social sciences and with simulations taken from the top algorithms used in the industry today. The authors use an engaging approach that mixes mathematics and programming experiments with beginning-intermediate level Python code to create an immersive learning experience that is cohesive and integrated. After reading this book, you will have an understanding of simulation used in natural sciences, engineering, and social sciences using Python. What You'll Learn Use Python and numerical computation to demonstrate the power of simulation Choose a paradigm to run a simulation Draw statistical insights from numerical experiments Know how simulation is used to solve real-world problems Who This Book Is For Entry-level to mid-level Python developers from various backgrounds, including backend developers, academic research programmers, data scientists, and machine learning engineers. The book is also useful to high school students and college undergraduates and graduates with STEM backgrounds.
Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming Key Features Work your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisions Understand how various data science algorithms function Build a solid foundation in statistics for data science and machine learning using Python-based examples Book DescriptionStatistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You'll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you'll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you've uncovered the working mechanism of data science algorithms, you'll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you'll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you'll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals. What you will learn Find out how to grab and load data into an analysis environment Perform descriptive analysis to extract meaningful summaries from data Discover probability, parameter estimation, hypothesis tests, and experiment design best practices Get to grips with resampling and bootstrapping in Python Delve into statistical tests with variance analysis, time series analysis, and A/B test examples Understand the statistics behind popular machine learning algorithms Answer questions on statistics for data scientist interviews Who this book is forThis book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you're a developer or student with a non-mathematical background, you'll find this book useful. Working knowledge of the Python programming language is required.
|
You may like...
|