Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book is focused on fundamental aspects of climate variability in the ocean, in particular changes of the wind-driven circulation. The vertical movement of isopycnal (isothermal) layers, including their stretching and compression, is called heaving and stretching. A major part of climate variability in the ocean is heaving in nature. Heave is primarily associated with the adiabatic motions of isopycnal layers due to change of wind stress. It is rather difficult to separate the contributions from adiabatic and diabatic processes. Isopycnal analysis has been widely used in climate study; however, it is much more accurate to study the isopycnal layers. Here climate signals are examined in terms of changes of layer depth, layer thickness, layer temperature/salinity, spicity and others. In addition to the traditional Theta-S diagram, the sigma-pi (potential density - potential spicity) diagram can also be used in analyzing water mass property distribution and climate variability. In fact, a radius of signal can be defined rigorously for signals in the sigma-pi diagram; the combination of isopycnal analysis and evaluation of radius of signal provides a powerful tool in analyzing climate variability in the world oceans.
This book is focused on fundamental aspects of climate variability in the ocean, in particular changes of the wind-driven circulation. The vertical movement of isopycnal (isothermal) layers, including their stretching and compression, is called heaving and stretching. A major part of climate variability in the ocean is heaving in nature. Heave is primarily associated with the adiabatic motions of isopycnal layers due to change of wind stress. It is rather difficult to separate the contributions from adiabatic and diabatic processes. Isopycnal analysis has been widely used in climate study; however, it is much more accurate to study the isopycnal layers. Here climate signals are examined in terms of changes of layer depth, layer thickness, layer temperature/salinity, spicity and others. In addition to the traditional Theta-S diagram, the sigma-pi (potential density - potential spicity) diagram can also be used in analyzing water mass property distribution and climate variability. In fact, a radius of signal can be defined rigorously for signals in the sigma-pi diagram; the combination of isopycnal analysis and evaluation of radius of signal provides a powerful tool in analyzing climate variability in the world oceans.
The interaction between ocean circulation and climate change has been an active research frontier in Earth sciences in recent years. Ocean circulation, and its related geophysical fluid dynamical principles, are now taught at graduate level in many Earth and atmospheric science departments. This is the first advanced textbook to discuss both wind-driven and thermohaline-driven processes - two important aspects of large-scale ocean circulation. It provides a concise introduction to the dynamics and thermodynamics of oceanic general circulation. This includes sea water thermodynamics and the energetics of the ocean circulation; an exhaustive theory of wind-driven circulation; thermohaline circulation with discussions on water mass formation/erosion, deep circulation, and the hydrological cycle; and interactions between wind-driven and thermohaline circulation. Highly illustrated to help the reader establish a clear mental picture of the physical principles involved, the book is invaluable for advanced courses in ocean circulation and as a reference for oceanographers and Earth scientists.
|
You may like...
|