0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Statistics for Health Data Science - An Organic Approach (Hardcover, 1st ed. 2020): Ruth Etzioni, Micha Mandel, Roman Gulati Statistics for Health Data Science - An Organic Approach (Hardcover, 1st ed. 2020)
Ruth Etzioni, Micha Mandel, Roman Gulati
R2,668 Discovery Miles 26 680 Ships in 18 - 22 working days

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students' anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep ("organic") understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Statistics for Health Data Science - An Organic Approach (Paperback, 1st ed. 2020): Ruth Etzioni, Micha Mandel, Roman Gulati Statistics for Health Data Science - An Organic Approach (Paperback, 1st ed. 2020)
Ruth Etzioni, Micha Mandel, Roman Gulati
R1,730 Discovery Miles 17 300 Ships in 18 - 22 working days

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students' anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep ("organic") understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
COVID-19 in Alzheimer's Disease and…
P.Hemachandra Reddy, Albin John Paperback R2,944 Discovery Miles 29 440
An Inquiry &C.
Henry Thornton Paperback R500 Discovery Miles 5 000
Samsung 870 EVO 500GB 2.5" SATA SSD
 (3)
R1,896 Discovery Miles 18 960
The Lotus japonicus Genome
Satoshi Tabata, Jens Stougaard Hardcover R4,770 Discovery Miles 47 700
Discovering Angels - How to Invite…
Pamela Landolt Hardcover R817 Discovery Miles 8 170
Scientific Perspectives of Tea Plant…
L. Manivel Paperback R3,478 Discovery Miles 34 780
My Son and the Afterlife - Conversations…
Elisa Medhus M D Paperback R413 R387 Discovery Miles 3 870
Safari Style Africa
Annemarie Meintjies Hardcover R743 Discovery Miles 7 430
240 Egg Automatic Roller and Incubator…
R4,999 Discovery Miles 49 990
Scatterling Of Africa - My Early Years
Johnny Clegg Paperback  (1)
R360 R326 Discovery Miles 3 260

 

Partners