0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Statistics for Health Data Science - An Organic Approach (Hardcover, 1st ed. 2020): Ruth Etzioni, Micha Mandel, Roman Gulati Statistics for Health Data Science - An Organic Approach (Hardcover, 1st ed. 2020)
Ruth Etzioni, Micha Mandel, Roman Gulati
R2,577 R2,383 Discovery Miles 23 830 Save R194 (8%) Ships in 9 - 15 working days

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students' anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep ("organic") understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Statistics for Health Data Science - An Organic Approach (Paperback, 1st ed. 2020): Ruth Etzioni, Micha Mandel, Roman Gulati Statistics for Health Data Science - An Organic Approach (Paperback, 1st ed. 2020)
Ruth Etzioni, Micha Mandel, Roman Gulati
R1,814 Discovery Miles 18 140 Ships in 10 - 15 working days

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students' anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep ("organic") understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Leisure Quip Stainless Steel Tumbler…
R39 R21 Discovery Miles 210
Gloria
Sam Smith CD R187 R177 Discovery Miles 1 770
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn Paperback R280 R210 Discovery Miles 2 100
Terminator 6: Dark Fate
Linda Hamilton, Arnold Schwarzenegger Blu-ray disc  (1)
R76 Discovery Miles 760
Moonology Diary 2025
Yasmin Boland Paperback R235 Discovery Miles 2 350
Harry's House
Harry Styles CD  (1)
R267 R237 Discovery Miles 2 370
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Multi-Functional Bamboo Standing Laptop…
 (1)
R995 R399 Discovery Miles 3 990
Playground Colourtime Backpacks
R199 Discovery Miles 1 990
Efekto Roundup - Ready-To-Use Weedkiller…
R369 R299 Discovery Miles 2 990

 

Partners