Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Mathematical modeling is the art and craft of building a system of
equations that is both sufficiently complex to do justice to
physical reality and sufficiently simple to give real insight into
the situation. Mathematical Modeling: A Chemical Engineer's
Perspective provides an elementary introduction to the craft by one
of the century's most distinguished practitioners. * Describes pitfalls as well as principles of mathematical
modeling
Ever since the seminal works on traveling waves and morphogenesis by Fisher, by Kolmogorov, Petrovski and Piscunov, and by Turing, scientists from many disciplines have been fascinated by questions concerning the formation of steady or dynamic patterns in reactive media. Contributions to this volume have been made by chemists, chemical engineers, mathematicians (both pure and applied), and physicists. The topics covered range from reports of experimental studies, through descriptions of numerical experiments, to rather abstract theoretical investigations, each exhibiting different aspects of a very diverse field.
When a dynamical system has a large number of parameters it is not possible to get a completely comprehensive picture of all the types of behavior that it may display and one must be content with surveying the system along various corridors of lower dimension. Using an example with three differential equations and six parameters it is shown how the available methods of singularity theory, bifurcation analysis, normal forms, etc. can be used to build up a picture of varied and interesting behavior. The model is a generalization of the Gray-Scott reaction scheme in a single stirred vessel to a two-phase reactor consisting of a reaction chamber and a reservoir communicating with each other through a semi-permeable membrane. Two forms exist according as to whether A is fed to the reactor and B to the reservoir or vice-versa, and show interesting differences of behavior. Both models undergo Hopf bifurcations, pitchfork transitions, have homoclinic orbits, take the period doubling route to chaos and one gets there by intermittency. Besides being of interest to mathematicians as an ecological study of a differentiable system, it is hoped that, though idealized, the fact that it corresponds closely to a real type of reactor will make it attractive to control engineers and others as a testing ground for their various methods and devices. This book will be of particular interest to students and researchers in mathematics and engineering , particularly those working in bifurcation or chaos theory.
Ever since the seminal works on traveling waves and morphogenesis by Fisher, by Kolmogorov, Petrovski and Piscunov, and by Turing, scientists from many disciplines have been fascinated by questions concerning the formation of steady or dynamic patterns in reactive media. Contributions to this volume have been made by chemists, chemical engineers, mathematicians (both pure and applied), and physicists. The topics covered range from reports of experimental studies, through descriptions of numerical experiments, to rather abstract theoretical investigations, each exhibiting different aspects of a very diverse field.
Introductory text for engineers, physicists and applied mathematicians applies mathematics of Cartesian and general tensors to physical field theories, demonstrating them chiefly in terms of the theory of fluid mechanics. Many exercises throughout the text. Index. Preface. Appendixes.
|
You may like...
Invaluable Trees - Cultures of Nature…
Laura Auricchio, Elizabeth Heckendorn Cook, …
Paperback
R2,868
Discovery Miles 28 680
Charles Stewart Parnell and His Times…
N. C. Fleming, Alan O'Day
Hardcover
R3,159
Discovery Miles 31 590
A History of England, Volume 2 - 1688 to…
Douglas Bisson, Clayton Roberts, …
Paperback
R1,984
Discovery Miles 19 840
|