Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book is the result of the contributions coming from the more than thirty key rd speakers of the 3 international Workshop on Nonlinear Microwave Magnetics held in th Roma, Italy from the 3rd to the 6 of October 1995. Since the 1990, in Ulyanovsk, when the Russian Academy of Sciences promoted the first Workshop of the series, the basic idea was to have a sort of Institutional Meeting collecting Scientists of the Magnetics Community devoted to Spin Wave Electronics at Microwave Frequencies. It was a succesful organization, and the birth of an effective interaction between eastern and western researchers overcame the meaning of the Workshop itself. Three years later, in Irvine, California, 1993, the Spin Wave Community was joined again. It was clear that the growing interest on hot topics of Nonlinear Microwave Magnetics involving both, applicative and fundamental aspects of microwave magnetic media, favoured the organization of further meetings on the same subject. So far, during the social dinner, in the middle between a serious proposal and the joke encouraged by the Californian Wine, Roma was proposed as the third place for the Workshop. Day after day, the joke became serious, and it was possible to solve the financial and logistic problems in time for the predicted deadline.
Explores theoretical and experimental studies of the properties of one-dimensional photonic crystals. The authors also consider the possibilities of controlling the characteristics of microwave photonic crystals with the help of electric and magnetic fields and provide examples of new fields of application of microwave photonic crystals. They review measurements of the parameters of layered structures containing nanometer-sized semiconductor and metal layers and explore microwave-compatible loads. Written for specialists and scientists working in the fields of radiophysics, microwave solid-state electronics, and microwave photonics. Key selling features: Presents studies of theoretical and experimental properties of one-dimensional photonic crystals Analyzes microwave photonic crystals based on flat transmission lines. Explores the use of electric and magnetic fields to control crystal characteristics. Reviews applications of photonic crystals in semiconductors. Examines one-dimensional microwave photonic crystals based on rectangular wave guides.
This book is the result of the contributions coming from the more than thirty key rd speakers of the 3 international Workshop on Nonlinear Microwave Magnetics held in th Roma, Italy from the 3rd to the 6 of October 1995. Since the 1990, in Ulyanovsk, when the Russian Academy of Sciences promoted the first Workshop of the series, the basic idea was to have a sort of Institutional Meeting collecting Scientists of the Magnetics Community devoted to Spin Wave Electronics at Microwave Frequencies. It was a succesful organization, and the birth of an effective interaction between eastern and western researchers overcame the meaning of the Workshop itself. Three years later, in Irvine, California, 1993, the Spin Wave Community was joined again. It was clear that the growing interest on hot topics of Nonlinear Microwave Magnetics involving both, applicative and fundamental aspects of microwave magnetic media, favoured the organization of further meetings on the same subject. So far, during the social dinner, in the middle between a serious proposal and the joke encouraged by the Californian Wine, Roma was proposed as the third place for the Workshop. Day after day, the joke became serious, and it was possible to solve the financial and logistic problems in time for the predicted deadline.
Explores theoretical and experimental studies of the properties of one-dimensional photonic crystals. The authors also consider the possibilities of controlling the characteristics of microwave photonic crystals with the help of electric and magnetic fields and provide examples of new fields of application of microwave photonic crystals. They review measurements of the parameters of layered structures containing nanometer-sized semiconductor and metal layers and explore microwave-compatible loads. Written for specialists and scientists working in the fields of radiophysics, microwave solid-state electronics, and microwave photonics. Key selling features: Presents studies of theoretical and experimental properties of one-dimensional photonic crystals Analyzes microwave photonic crystals based on flat transmission lines. Explores the use of electric and magnetic fields to control crystal characteristics. Reviews applications of photonic crystals in semiconductors. Examines one-dimensional microwave photonic crystals based on rectangular wave guides.
|
You may like...
|