Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Fundamentals of Mathematics represents a new kind of mathematical publication. While excellent technical treatises have been written about specialized fields, they provide little help for the nonspecialist; and other books, some of them semipopular in nature, give an overview of mathematics while omitting some necessary details. Fundamentals of Mathematics strikes a unique balance, presenting an irreproachable treatment of specialized fields and at the same time providing a very clear view of their interrelations, a feature of great value to students, instructors, and those who use mathematics in applied and scientific endeavors. Moreover, as noted in a review of the German edition in Mathematical Reviews, the work is "designed to acquaint the student] with modern viewpoints and developments. The articles are well illustrated and supplied with references to the literature, both current and 'classical.'"The outstanding pedagogical quality of this work was made possible only by the unique method by which it was written. There are, in general, two authors for each chapter: one a university researcher, the other a teacher of long experience in the German educational system. (In a few cases, more than two authors have collaborated.) And the whole book has been coordinated in repeated conferences, involving altogether about 150 authors and coordinators.Volume I opens with a section on mathematical foundations. It covers such topics as axiomatization, the concept of an algorithm, proofs, the theory of sets, the theory of relations, Boolean algebra, and antinomies. The closing section, on the real number system and algebra, takes up natural numbers, groups, linear algebra, polynomials, rings and ideals, the theory of numbers, algebraic extensions of a fields, complex numbers and quaternions, lattices, the theory of structure, and Zorn's lemma.Volume II begins with eight chapters on the foundations of geometry, followed by eight others on its analytic treatment. The latter include discussions of affine and Euclidean geometry, algebraic geometry, the Erlanger Program and higher geometry, group theory approaches, differential geometry, convex figures, and aspects of topology.Volume III, on analysis, covers convergence, functions, integral and measure, fundamental concepts of probability theory, alternating differential forms, complex numbers and variables, points at infinity, ordinary and partial differential equations, difference equations and definite integrals, functional analysis, real functions, and analytic number theory. An important concluding chapter examines "The Changing Structure of Modern Mathematics."
A comprehensive exposition of mathematics, tracing the history and cultural significance of mathematical ideas from antiquity to the present day. Mathematics, which originated in antiquity in the needs of daily life, has developed into an immense system of widely varied disciplines. Like the other sciences, it reflects the laws of the material world around us and serves as a powerful instrument for our knowledge and mastery of nature. But the high level of abstraction peculiar to mathematics means that its newer branches are relatively inaccessible to nonspecialists. This abstract character of mathematics gave birth even in antiquity to idealistic notions about its independence of the material world. In recent years, many popular books about mathematics have appeared, but many of them have neglected the twentieth century, the undisputed "golden age" of mathematics. This book undertakes the ultimate task of mathematical exposition, outlining the history and cultural significance of mathematical ideas and their continuous development from the earliest beginnings of history to the present day.
The first edition of this book gave a systematic exposition of the Weinstein method of calculating lower bounds of eigenvalues by means of intermediate problems. From the reviews of this edition and from subsequent shorter expositions it has become clear that the method is of considerable interest to the mathematical world; this interest has increased greatly in recent years by the success of some mathematicians in simplifying and extending the numerical applications, particularly in quantum mechanics. Until now new developments have been available only in articles scattered throughout the literature: this second edition presents them systematically in the framework of the material contained in the first edition, which is retained in somewhat modified form.
|
You may like...
|