Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Providing a basic foundation for advanced graduate study and research in the mechanics of solids, this 2004 treatise contains a systematic development of the fundamentals of finite inelastic deformations of heterogeneous materials. The book combines the mathematical rigour of solid mechanics with the physics-based micro-structural understanding of the material science, to present a coherent picture of finite inelastic deformation of single and polycrystalline metals, over broad ranges of strain rates and temperatures. It also includes a similarly rigourous and experimentally based development of the quasi-static deformation of cohesionless granular materials that support the applied loads through contact friction. Every effort has been made to provide a thorough treatment of the subject, rendering the book accessible to students in solid mechanics and in the mechanics of materials. This book integrates rigourous mathematical description of finite deformations seamlessly with mechanisms based on micromechanics in order to produce useful results with relevance to practical problems.
Providing a basic foundation for advanced graduate study and research in the mechanics of solids, this 2004 treatise contains a systematic development of the fundamentals of finite inelastic deformations of heterogeneous materials. The book combines the mathematical rigour of solid mechanics with the physics-based micro-structural understanding of the material science, to present a coherent picture of finite inelastic deformation of single and polycrystalline metals, over broad ranges of strain rates and temperatures. It also includes a similarly rigourous and experimentally based development of the quasi-static deformation of cohesionless granular materials that support the applied loads through contact friction. Every effort has been made to provide a thorough treatment of the subject, rendering the book accessible to students in solid mechanics and in the mechanics of materials. This book integrates rigourous mathematical description of finite deformations seamlessly with mechanisms based on micromechanics in order to produce useful results with relevance to practical problems.
A central problem in engineering is the deformation of structures. These may be structures made of metal, from concrete or other buildingmaterials, orfrom soilforexample. Generallyspeaking, the engineerrequiresthedeformationofastructuretoberelativelysmall, predictable, tolerable and non-damaging. Professor Jean Mandel devotedalargepartofhisprofessionalcareertostudiesofdeforma tionandhewassuccessfulinidentifyingprinciplesandproceduresof wideapplicability.Accordingly, itisveryappropriatetobringtogether as we dointhis volume papers by world authorities concerned with deformationinmemoryofProfessorMandel. The papers in this volume were all invited contributions to an international CNRS colloquium which was held at the Ecole Poly techniqueinParis, 30September-2October1985. Thevolumeconsidersthedeformationofmetals, rocks, composites, soils, sand and wood. The microscopic processes and theory of deformationaretreated, asarethegenerallawsrelatingdeformation with parameters such as stress system and temperature. A central problemwhichhasbeensystematicallyattackedinthecaseofmetalsis the relationship between the behaviour of crystal defects such as dislocations and the deformationofa large specimenorengineering component.Itshould be possible to produce accurate predictionsof macroscopic deformation from a microscopic model and substantial progresstowardsthisendhasbeenmadeinrecentyears.Thefirsttwo sectionsofthe bookare largelyconcerned with progress in this very importantarea. A parallel theme which was established in earlier days is the developmentofcontinuummodelsfordeformation.Suchmodelswere proposedatatimewhenmicroscopyhadnotdevelopedtoitspresent levelofsophisticationsothat, forexample, itwasnotestablishedthat v VI PREFACE crystalsactuallycontaineddislocations.Thecontinuumtheorieswhich datebackmorethanacenturysoughttoexplainmicroscopicdeforma tion in terms of abstract models involving mechanical elements of whichthespringand the dashpot wereprominentexamples. Froma strictly practical standpoint these continuum models still have great utilitytoday, particularlyinareaswhere the materialsaresocompli cated that the preferred route, linking microscopic behaviour with macroscopicbehaviour, is notyet available. Section3ofthe book is concernedthereforewiththecontinuumpointofviewformetals."
In this second edition several new topics of technological interest have been added. These include: coupled mechanical and nonmechanical overall properties of heterogeneous piezoelectric materials, new upper and lower bounds for these coupled properties, a systematic comparison between the average-field theory and the results obtained using multi-scale perturbation theory, an account of the uniform-field theory, improveable bounds on overall moduli of heterogeneous materials which remain finite even when isolated cavities and rigid inclusions are present, and a brief account of a fundamental duality principle in anisotropic elasticity. In addition, better explanations of a number of topics are given, more recent references are added, the Subject Index has been expanded and printing and typographical errors have been corrected.
|
You may like...
The Biographical History of Sir William…
Sylvester Douglas Glenbervie
Hardcover
R1,016
Discovery Miles 10 160
|