Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
When the Mathematical Sciences Research Institute was started in the Fall of 1982, one of the programs was "non-linear partial differential equations." A seminar was organized whose audience consisted of graduate students of the University and mature mathematicians who are not experts in the field. This volume contains 18 of these lectures. An effort is made to have an adequate Bibliography for further information. The Editor wishes to take this opportunity to thank all the speakers and the authors of the articles presented in this volume for their cooperation. S. S. Chern, Editor Table of Contents Geometrical and Analytical Questions Stuart S. Antman 1 in Nonlinear Elasticity An Introduction to Euler's Equations Alexandre J. Chorin 31 for an Incompressible Fluid Linearizing Flows and a Cohomology Phillip Griffiths 37 Interpretation of Lax Equations The Ricci Curvature Equation Richard Hamilton 47 A Walk Through Partial Differential Fritz John 73 Equations Remarks on Zero Viscosity Limit for Tosio Kato 85 Nonstationary Navier-Stokes Flows with Boundary Free Boundary Problems in Mechanics Joseph B. Keller 99 The Method of Partial Regularity as Robert V.
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe?It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.
Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.
When the Mathematical Sciences Research Institute was started in the Fall of 1982, one of the programs was "non-linear partial differential equations." A seminar was organized whose audience consisted of graduate students of the University and mature mathematicians who are not experts in the field. This volume contains 18 of these lectures. An effort is made to have an adequate Bibliography for further information. The Editor wishes to take this opportunity to thank all the speakers and the authors of the articles presented in this volume for their cooperation. S. S. Chern, Editor Table of Contents Geometrical and Analytical Questions Stuart S. Antman 1 in Nonlinear Elasticity An Introduction to Euler's Equations Alexandre J. Chorin 31 for an Incompressible Fluid Linearizing Flows and a Cohomology Phillip Griffiths 37 Interpretation of Lax Equations The Ricci Curvature Equation Richard Hamilton 47 A Walk Through Partial Differential Fritz John 73 Equations Remarks on Zero Viscosity Limit for Tosio Kato 85 Nonstationary Navier-Stokes Flows with Boundary Free Boundary Problems in Mechanics Joseph B. Keller 99 The Method of Partial Regularity as Robert V.
This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.
Mathematics has a certain mystique, for it is pure and ex- act, yet demands remarkable creativity. This reputation is reinforced by its characteristic abstraction and its own in- dividual language, which often disguise its origins in and connections with the physical world. Publishing mathematics, therefore, requires special effort and talent. Heinz G-tze, who has dedicated his life to scientific pu- blishing, took up this challenge with his typical enthusi- asm. This Festschrift celebrates his invaluable contribu- tions to the mathematical community, many of whose leading members he counts among his personal friends. The articles, written by mathematicians from around the world and coming from diverse fields, portray the important role of mathematics in our culture. Here, the reflections of important mathematicians, often focused on the history of mathematics, are collected, in recognition of Heinz G-tze's life-longsupport of mathematics.
In this work, I have attempted to give a coherent exposition of the theory of differential forms on a manifold and harmonic forms on a Riemannian space. The concept of a current, a notion so general that it includes as special cases both differential forms and chains, is the key to understanding how the homology properties of a manifold are immediately evident in the study of differential forms and of chains. The notion of distribution, introduced by L. Schwartz, motivated the precise definition adopted here. In our terminology, distributions are currents of degree zero, and a current can be considered as a differential form for which the coefficients are distributions. The works of L. Schwartz, in particular his beautiful book on the Theory of Distributions, have been a very great asset in the elaboration of this work. The reader however will not need to be familiar with these. Leaving aside the applications of the theory, I have restricted myself to considering theorems which to me seem essential and I have tried to present simple and complete of these, accessible to each reader having a minimum of mathematical proofs background. Outside of topics contained in all degree programs, the knowledge of the most elementary notions of general topology and tensor calculus and also, for the final chapter, that of the Fredholm theorem, would in principle be adequate.
These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J.W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, .
This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e., submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object."
|
You may like...
|