![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 253 matches in All Departments
Hydraulic Rubber Dam: An Effective Water Management Technology is the go-to source for information on the materials, manufacture, mechanics and functional benefit of rubber dams in water management. Readers will find a detailed background on water conservation and coverage, how inflatable rubber dam technology contributes to the picture, and information on the proper manufacture and use of rubber dams to increase water storage for release and delivery during drought. In addition, the book presents tactics on the even distribution of water across populations, how to increase water use efficiency, conservation, and how to prevent flooding. In particular, this book details specialist manufacturing techniques, including the development of rubber compounds and fabric, the bonding and anchoring systems which hold the rubber dam to the underlying concrete structure, and inflation and deflation mechanisms for rubber dams. The book provides a holistic lifecycle assessment of rubber dams to give additional insight to readers looking to deploy rubber dam technology.
Recycling of Polyethylene Terephthalate Bottles provides an overview of PET chemistry, highlighting the main degradation, depolymerization processes and pathways of PET, along with the applications of recycled monomers derived from PET waste. The latest methodologies of recycling and feedstock recovery are covered, providing critical foundational information. In addition, the book discusses a range of established methods of polymer recycling, with an emphasis on real world industrial case studies and the latest academic research. Users will find in-depth lifecycle and cost analysis of each waste management method, comparing the suitability and feasibility of each to support the decision -making process. Polyethylene Terephthalate (PET) is the most recycled plastic in the world, but still represents a significant amount of landfill waste. This book presents an update on new regulations, providing recommendations for new opportunities in this area, including new processing methods and applications for recycled PET.
Fundamental Biomaterials: Polymers provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices. Chapters analyze the types of polymers and discuss a range of biomedical applications. It is the first title in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on classification, materials properties, behavior, biocompatibility and applications. The book concludes with essential information on wear, lifetime prediction and cytotoxicity of biomaterials. This title will be of use to researchers and professionals in development stages, but will also help medical researchers understand and effectively communicate the requirements of a biomaterial for a specific application. Further, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels.
Hybrid Nanofillers for Polymer Reinforcement: Synthesis, Assembly, Characterization, and Applications provides a targeted approach to hybrid nanostructures, enabling the development of these advanced nanomaterials for specific applications. The book begins by reviewing the status of hybrid nanostructures, their current applications, and future opportunities. This is followed by chapters examining synthesis and characterization techniques, as well as interactions within nanohybrid systems. The second part of the book provides detailed chapters each highlighting a particular application area and discussing the preparation of various hybrid nano systems that can potentially be utilized in that area. The last chapters turn towards notable state-of-the-art hybrid nanomaterials and their properties and applications. This book is a valuable resource for researchers and advanced students across polymer science, nanotechnology, rubber technology, chemistry, sustainable materials, and materials engineering, as well as scientists, engineers, and R&D professionals with an interest in hybrid nanostructures or advanced nanomaterials for a industrial application.
The Handbook of Natural Polymers, Volume Two: Functionalization, Surface Modification, and Properties covers modifications, functionalization, analysis and properties of polymers from natural sources. The book begins by introducing the current state-of-the-art, challenges and opportunities in natural polymers. This is followed by detailed coverage of methods for chemical, physical and surface modifications, and functionalization of natural polymers, including nanocellulose composites, gluten, chitin, alginate, pectin, keratin, shellac, wool, hemicellulose, lignin, natural rubber, albumin, collagen, gelatin, zein, soya protein, silk fibroin, gutta percha and gum. The final chapters explain several other key aspects, such as microscopical and spectroscopical analysis, mechanical, thermal, and more. The book aims to offer potential avenues for the preparation, modification, and implementation of advanced natural polymer-based materials with the desired properties for specific applications.
Poly(vinyl chloride)-Based Blends, IPNs, and Gels brings together the latest research on the blending of PVC, covering processing, materials, properties, and applications. This book addresses these challenges and highlights the state-of-the-art in the field, such as the development of eco-friendly micro and nanostructured functional materials based on PVC and advances in experimental and theoretical studies of PVC based-polymer blends. This is a valuable resource for researchers and advanced students in polymer science, chemistry, composite science, and materials science and engineering, as well as R&D professionals, engineers, and scientists working with advanced PVC-based materials across a range of industries.
Nanostructured Materials for Biomedical Applications highlights progress, challenges and opportunities in nanomedicine and discusses novel engineering approaches of nanostructured materials that are useful in various biomedical applications. The book provides a comprehensive review of the state-of-the-art in bio-nanotechnology, with an emphasis on diverse biomedical applications, such as in drug delivery, bioimaging, hyperthermia and targeted cancer therapy. Users will find this to be a broad introductory reference for anyone new to the field or those who wish to gain a thorough overview of nanostructured materials in the context of biomedical applications. The breadth of this book will appeal to an interdisciplinary audience, including materials scientists, pharmaceutical scientists and biomedical engineers.
Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries. This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology.
Cartilage, Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling is a cutting-edge multidisciplinary book specifically focused on modeling, characterization and related clinical aspects. The book takes a comprehensive approach towards mechanics, fundamentals, morphology and properties of Cartilage Tissue and Knee Joints. Leading researchers from health science, medical technologists, engineers, academics, government, and private research institutions across the globe have contributed to this book. This book is a very valuable resource for graduates and postgraduates, engineers and research scholars. The content also includes comprehensive real-world applications. As a reference for the total knee arthroplasty, this book focuses deeply on existing related theories (including: histology, design, manufacturing and clinical aspects) to assist readers in solving fundamental and applied problems in biomechanical and biomaterials characterization, modeling and simulation of human cartilages and cells. For biomedical engineers dealing with implants and biomaterials for knee joint injuries, this book will guide you in learning the knee anatomy, range of motion, surgical procedures, physiological loading and boundary conditions, biomechanics of connective soft tissues, type of injuries, and more.
Advances in Bionanocomposites: Materials, Applications, and Life Cycle brings together the latest research in bio-based nanocomposites, with a strong emphasis on improved sustainability in terms of preparation, lifecycle and end applications. The book begins by introducing biopolymers, bionanocomposites and the latest methods for their synthesis, processing and characterization. Other sections focus on specific bio-based materials, including bionanocomposites based on polylactic acid, poly(vinyl alcohol), chitosan, starch, cellulose, and protein. A range of advanced applications are then introduced across 3D printing, high entropy alloys, wastewater remediation, agriculture, biomedicine, solar cells, electrochemical sensors, and packaging. Throughout the book, opportunities for improved sustainability are analyzed and highlighted. The final section brings this together with in-depth coverage of biodegradation, lifecycle, environmental impact, circular economy, economic considerations and future opportunities in bionanocomposites. This is a valuable resource for researchers, advanced students, R&D professionals, and industrial scientists from a range of disciplines.
Non-Destructive Material Characterization Methods provides readers with a trove of theoretical and practical insight into how to implement different non-destructive testing methods for effective material characterization. The book starts with an introduction to the field before moving right into a discussion of a wide range of techniques that can be immediately implemented. Various imaging and microscopy techniques are first covered, with step-by-step insights on characterization using a polarized microscope, an atomic force microscope, computed tomography, ultrasonography, magnetic resonance imaging, infrared tomography, and more. Each chapter includes case studies, applications, and recent developments. From there, elemental assay and mapping techniques are discussed, including Raman spectroscopy, UV spectroscopy, atomic absorption spectroscopy, neutron activation analysis, and various others. The book concludes with sections covering displacement measurement techniques, large-scale facility techniques, and methods involving multiscale analysis and advanced analysis.
Polymer-Based Nanoscale Materials for Surface Coatings presents the latest advances and emerging technologies in polymer-based nanomaterials for coatings, focusing on novel materials, characterization techniques, and cutting-edge applications. Sections present the fundamentals of surface preparation and nanocoatings, linking materials and properties, explaining the correlation between morphology, surface phenomena, and surface protection mechanism, and covering theory, modeling and simulation. Other presented topics cover characterization methods, with an emphasis on the latest developments in techniques and approaches. Aging and lifecycle assessment of coated surfaces and coatings are also discussed. Final sections explore advanced applications across a range of fields, including intelligent coatings for biomedical implants, self-healing coatings, syper-hydrophobicity, electroluminescence, sustainable edible coatings, marine antifouling, corrosion resistance, and photocatalytic coatings.
Applications of Unsaturated Polyester Resins: Synthesis, Modifications, and Preparation Methods takes a practical approach to unsaturated polyester-based materials and their preparation for implementation in a range of innovative areas. Sections introduce the background of polyester and the fundamentals of unsaturated polyester resins (UPRs), including chemistry, additives, curing, and processing methods. Hydrolytic stability and structure-property relationships are also discussed in detail, along with coverage of modification strategies for UPR and the development of bio-composites incorporating natural fiber with unsaturated polyester. Subsequent chapters focus on the preparation of UPR for specific target applications, including in construction, marine and aerospace, adhesives and coatings, insulation systems, electrics, pipeline corrosion, military, biomedicine, and tissue engineering. Finally, the advantages and disadvantages of UPR compared to other resins, in terms of properties and performance, as well as life cycle assessment, are addressed and analyzed.
Novel Platforms for Drug Delivery Applications covers diverse aspects in the design, synthesis and characterization of novel drug delivery platforms and devices. This book comprehensively details the development, application and performance of various novel molecular frameworks as potent drug delivery vehicles. Chapters cover a range of materials and molecular platforms for drug delivery, from hydrogels, nanocarriers and metal-organic-frameworks, to ?-cyclodextrin and polyphosphazene. Each chapter discusses the benefits and limitations of each drug delivery system, as well as toxicological and safety implications. This book offers an interdisciplinary approach to this fast-moving topic, bridging the disciplines of materials science and pharmacology.
Applications of Multifunctional Nanomaterials showcases the major applications of highly correlated nanosystems that highlight the multifunctionality of nanomaterials. This includes applications of nanomaterials in spintronics, information storage, magnetic data storage and memory device applications, energy harvesting applications using nanomultiferroics with piezoelectric polymers, nonlinear optical limiting applications using graphene or ferrite nanoparticles, soft tissues applications, EMI shielding applications and even applications in sunscreen lotions, cosmetics and food packaging will be discussed. In addition, nanoparticle incorporation in animal nutrition intended for increased productivity is an innovative and groundbreaking theme of the book. Finally, functionalized magnetic nanoparticles for drug delivery, magnetic hyperthermia, sutures, cancer therapy, dentistry and other biomedical and bio-engineering applications using nanoparticles are discussed in detail.
In-Silico Approaches to Macromolecular Chemistry helps students, researchers and industry professionals gain a clear overview of the field, giving users the knowledge needed to understand and select the most appropriate tools for conducting and analyzing computational studies. With applications across a broad range of areas, many different methods have been developed for exploring macromolecules in silico, making it difficult for researchers to select the most appropriate for their specific needs. Covering both biopolymers and synthetic polymers, this book familiarizes readers with the theoretical tools and software appropriate for such studies. In addition to providing essential background knowledge on both computational tools and macromolecules, the book presents in-depth studies of in silico macromolecule chemistry, discusses and compares these with experimental studies, and highlights the future potential for such approaches.
Sustainable Hydrogels: Synthesis, Properties and Applications highlights the development of sustainable hydrogels from various perspectives and covers a range of topics, including the development and utilization of abundant and/or inexpensive biorenewable monomers to create hydrogels; the mimicry of variable properties inherent to successful commercial hydrogels; and the creation of bio-based hydrogels that are functional equivalents of fossil fuel-derived hydrogels with respect to their properties, yet are capable of benign degradation over much shorter timescales. Some of the challenges facing sustainable polymer chemistry are also discussed.
Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites combines fundamental knowledge with the latest findings in the area of polymer tribology. From testing of property-related mechanisms to prediction of wear using artificial neural networks, the book explores all relevant polymer types, including elastomers, epoxy-based, nylon, and more while also discussing their different types of reinforcement, such as particulates, short fibers, natural fibers, and beyond. New developments in sustainable materials, environmental effects, nanoscaled fillers, and self-lubrication are each discussed, as are applications of these materials, guidelines for when to use certain polymer systems, and functional groups of polymers. Experimental methods and modeling and prediction techniques are also outlined. The tribology of graphene-based, biodegradable, hybrid nanofiller/polymer nanocomposites and other types of polymers is discussed at length.
Polymeric materials offer a high level of versatility due to the range of applications possible within the biomedical and clinical fields - including wound closure - particularly in comparison to metals or ceramics. These specialised materials also allow for a diverse array of therapeutic effects. Although there have been advances in improving polymeric materials for surgical sutures, there is little information available regarding improving the therapeutic value of sutures, and advanced technologies used to implement this improvement. Advanced Technologies and Polymer Materials for Surgical Sutures provides thorough coverage on suture materials with improved mechanical and therapeutic properties that can improve quality of life; chapter topics include drug-releasing kinetics of sutures, shape memory polymer sutures and future trends. This book is a useful resource for academics and researchers in the materials science and biomedical engineering fields, as well as professionals in biomaterials and biotextiles development and clinicians looking to learn more about suture material properties and suture/body interactions.
Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material offers an up-to-date record on the major findings and observations relating to graphitic carbon nitride-based systems, elaborately covering all the aspects of carbon nitride as chemical stable and pollution-free materials that are easy to prepare in a cost-effective way, along with their applications in photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, sensors and supercapacitors. Graphitic carbon nitride (g-C3N4) is a fascinating visible light photocatalyst, which possesses many properties that can be used for many applications. This makes the book an indispensable reference for (post)-graduate students, researchers in academia and industry, and engineers working in the field of graphitic carbon-nitride-based systems.
Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects provides a general overview of the development and performance of different novel molecular frameworks as potent vehicles for sensing Chemical Weapons (CWs). The chapters are contributed by leading researchers in the areas of materials science, medical science, chemical science, and nanotechnology from industries, academics, government and private research institutions across the globe. It covers cover topics such as inorganic nanocomposites, hyperbranched polymers, and graphene heterojunctions for effective sensing of CW agents. This book is a highly valuable reference source for graduates, post-graduates, and research scholars primarily in the fields of materials science, medicinal chemistry, organic chemistry, and nanoscience and nanotechnology. In addition, almost all analytical techniques will be discussed, making this a first-rate reference for professors, students, and scientists in many industries.
Wool Fiber Reinforced Polymer Composites is an in-depth and practical exploration of wool-based composites, covering everything from the morphology of wool fiber to the industrial applications of wool composites. Wool has emerged in the top position for this role because of its unique characteristics. While fine wool is too costly for many such applications, coarse wool of greater than 35 microns fiber length is globally under-utilized. This pioneering book describes every form of wool composite, woven, nonwoven, felt and fiber, including different fabrication methods. In unique detail, the international team of expert contributors describe the morphology, structure and properties of wool, methods for the chemical modification of wool, different forms of wool-polymer composites, and many exciting emerging applications.
Luminescent Metal Nanoclusters: Synthesis, Characterization, and Applications provides a comprehensive accounting of various protocols used for the synthesis of metal nanoclusters, their characterization techniques, toxicity evaluation and various applications and future prospects. The book provides detailed experimental routes, along with mechanisms on the formation of benign metallic clusters using biomaterials and a comprehensive review regarding the preparation, properties and prospective applications of these nano clusters in various fields, including therapeutic applications. Various methods to protect nanocluster materials to increase their stability are emphasized, including the incorporation of ligands (protein, small molecule, DNA, thiols). This book addresses a gap in the current literature by bringing together the preparation, characterization and applications of all the possible types of reported metal nanoclusters and their hybrids. It is suitable for materials scientists and engineers in academia and those working in research and development in industry. It may also be of interest to those working in the interdisciplinary nanotechnology community, such as physical chemists.
Engineered Polymer Nanocomposites for Energy Harvesting Applications looks at materials engineering, characterization and design aspects of mechanical energy harvesting devices for superior performance. Tapping into electrical energy from various mechanical stimuli, such as stress, elongation, tension and vibration has been getting substantial research attention, however, there are many challenges associated with the development energy harvesters with efficient conversion capabilities. This title consolidates a broad spectrum of material engineering and devices design research into one resource and will be an invaluable reference for those working in this field.
Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy. The book explores major synthesis methods and functional studies, including: Brillouin spectroscopy; Temperature-dependent Raman spectroscopic studies; Magnetic, ferroelectric, and magneto-electric coupling analysis; Organ-on-a-chip methods for testing nanomaterials; Magnetron sputtering techniques; Pulsed laser deposition techniques; Positron annihilation spectroscopy to prove defects in nanomaterials; Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials. |
![]() ![]() You may like...
Dan Levenson - Old-Time Banjo and Fiddle…
Lewis M. Stern, David Brooks
Paperback
R516
Discovery Miles 5 160
The Routledge Companion to Mobile Media
Gerard Goggin, Larissa Hjorth
Hardcover
R7,082
Discovery Miles 70 820
Carols for Choirs - Carols for Choirs…
David Willcocks, John Rutter
Sheet music
R525
Discovery Miles 5 250
|