Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 251 matches in All Departments
This volume serves as a cutting edge reference on XLPE based blends, nanocomposites, and their applications. The book provides an introduction to XLPE nanocomposites and discusses the incorporation of natural and inorganic nanoparticles in the XLPE matrix. It also focuses on its characterization as well as the morphological, rheological, mechanical, viscoelastic, thermal, and electrical, properties. It provides an in-depth review of various potential applications, with special emphasis on use in cable insulation. The book focuses on cutting edge research developments, looking at published papers, patents, and production data. This book will be of use to academic and industry researchers, as well as graduate students working in the fields of polymer science and engineering, materials science, and chemical engineering.
This book presents an introduction to the concept and need of sustainable agriculture, the mechanisms of conventional and controlled release of pesticides, herbicides and plant hormones. It also contains the carriers which supply controlled release including polymers and nanoparticles. A full chapter is devoted to the theory and simulation aspects.
This book focuses on polymer/silver nanocomposites as the main component in bioengineering systems. It describes in detail the synthesis and characterization (morphological, thermal, mechanical & dynamic mechanical properties), as well as the different applications of these composites. A special chapter is dedicated to the toxicity aspects of silver nanoparticles
Antimicrobial resistance is a major global public health problem. This book focuses on the clinical implications of multi-drug resistant pathogens; tracking AMR and its evolutionary significance; antifungal resistance; and current and alternative treatment strategies for AMR, including antivirulent, antibiofilm and antimicrobial resistance breakers, repurposing of drugs, and probiotic therapy. Advances in antimicrobial stewardship, antibiotic policies from a global perspective and their impacts are also discussed. The book also explores the use of omics approaches to gain insights into antibacterial resistance, and includes chapters on the potential benefits of a 'One Health approach' describing the environmental and zoonotic sources of resistant genes and their effects on the global resistance pool.
This book presents varied clinical applications of nanomaterials in dentistry ranging from diagnostics to therapeutics. it discusses role of nanomaterials in clinical applications and future needs. Contributors are international luminaries in their respective research area. The topics covered in this book are role of nanomaterials in oral and dental diagnosis, dental disease prevention, pain free dentistry, dental implantology. It also discusses the therapeutic applications of nanoparticles in oral cancer therapy. This book will be a valuable reference for researchers, clinicians, students and professionals working in the areas of nanotechnology and health sciences. It will also be of interest to the students and researchers primarily working in the field of materials science, applied chemistry, applied physics, and biotechnology.
This book presents important developments in green chemistry, with a particular focus on composite materials chemistry. In recent years, natural polymers have generated much interest due to their unique morphology and physical properties. The book gives an introductory overview of green composites, and discusses their emerging interdisciplinary applications in various contemporary fields. The chapters, written by leading experts from industry and academia, cover different aspects of biodegradable green composites and natural polymers including their processing, manufacturing, properties, and applications. This book will be a valuable reference for beginners, researchers as well as industry professionals interested in biodegradable composites.
This book introduces the reader to important aspects of the nano-hydrogels. It covers the development of hydrogels and their biology, chemistry and properties. Focus is also given to innovative characterization techniques and advances in structural design, with special emphasis on molecular structure, dynamic behavior and structural modifications of hydrogels. This book serves as a consolidated reference work for the diverse aspects of hydrogels, creating a valuable resource for students and researchers in academia and industry.
This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.
This book is the first comprehensive collection of electronic aspects of different kinds of elastomer composites, including combinations of synthetic, natural and thermoplastic elastomers with different conducting fillers like metal nanoparticles, carbon nanotubes, or graphenes, and many more. It covers elastomer composites, which are useful in electronic applications, including chemical and physical as well as material science aspects. The presented elastomer composites have great potential for solving emerging new material application requirements, for example as flexible and wearable electronics. The book is structured and organized by the rubber/elastomer type: each chapter describes a different elastomer matrix and its composites. While introducing to important fundamentals, it is application-oriented, discussing the current issues and challenges in the field of elastomer composites. This book will thus appeal to researchers and scientists, to engineers and technologists, but also to graduate students, working on elastomer composites, or on electronics engineering with the composites, providing the readers with a sound introduction to the field and solutions to both fundamental and applied problems.
This volume looks at the different aspects involved in controlling microbial growth and the techniques employed in obtaining sterile surfaces. It covers research on coatings, nano-materials, herbal materials, naturally occurring antimicrobials in designing antimicrobial surfaces. It discusses issues of antibiotic resistance, synthesis techniques, toxicity, and current and potential applications of antimicrobial surfaces, and this book will serve as a useful reference to a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering.
This book introduces the reader to drug delivery with specific emphasis on the use of nanoparticles. It covers properties, characterization, and preparation of different types of nanoparticles and discusses recent advances in their structural design and biomedical application, as well as the issues and challenges associated with their design and use. Some of the topics covered include the potential application of nanoparticles in biomedical fields, hazards associated with use of nanoparticles for drug delivery, size-dependent factors in drug delivery applications, different organic, inorganic and their hybrid systems used in drug delivery, etc. It also highlights use of nanoparticles in controlled and targeted drug delivery, and their application in stimuli-responsive, especially pH-responsive, drug release. Additionally, it also focuses on biomimetic nanoparticles, challenges faced in the designing of nanoparticles for drug delivery in cancer, viral and bacterial diseases. The contents of this volume will be useful to researchers and professionals working on advances in targeted drug delivery systems.
This volume covers various aspects of cross-linked polyethylene (XLPE). The contents include manufacture, morphology, structure, properties, applications, early stage development, cross-linking techniques, recycling process, physical and chemical properties as well as the scope and future aspects of XLPE. It focuses on the life cycle analysis of XLPE and their industrial applications and commercial importance. This book will be of use to academic and industry researchers, as well as graduate students working in the fields of polymer science and engineering, materials science, and chemical engineering.
The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing and manufacturing new materials for novel end-use applications. The book takes a detailed approach to the description of process parameters, process optimization, mold design, and other core manufacturing information. Details of injection, extrusion, and compression molding processes have been provided based on the most recent advances in the field. Over two comprehensive sections the book covers the entire field of multiphase polymer materials, from a detailed description of material design and processing to the cutting-edge applications of such multiphase materials. It provides both precise guidelines and general concepts for the present and future leaders in academic and industrial sectors.
This new volume focuses on polymers, their characterization, and their various applications. These include drug delivery applications, electromagnetic shielding, ferroelectric applications, and many more. The book covers synthesis, characterization, and property studies of some of these polymers including their morphology, structure, and dynamics. It also introduces the most recent innovations and applications of polymers, fillers, and their composites in the electronics, biomedical, pharmaceutical, and engineering industries. Topics also include ferroelectric ceramics and the numerous polymers used for radiation shielding applications. The bottleneck in the development of novel technologies is often defined by the limitations of the available materials. Polymer science, for instance, has lately made large steps towards innovative materials and processes. Polymeric materials are ideal examples of structural and functional materials because of their versatility in practically all areas of modern life and technology. Some of their outstanding properties are high elasticity, stiffness, toughness, strength, good thermal resistance, and high chemical stability. This volume, Advances in Diverse Applications of Polymer Composites: Synthesis, Application, and Characterization, provides important information that will be valuable for researchers, postgraduate students, professors, and instructors working in the field of polymers.
This is the second volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. Advances in Elastomers discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This second volume is deals with composites and nanocomposites of elastomers.
This book provides a comprehensive overview of the current state-of-art in oxide nanostructures, carbon nanostructures and 2D materials fabrication. It covers mimicking of sensing mechanisms and applications in gas sensors. It focuses on gas sensors based on functional nanostructured materials, especially related to issues of sensitivity, selectivity, and temperature dependency for sensors. It covers synthesis, properties, and current gas sensing tools and discusses the necessity for miniaturized sensors. This book will be of use to senior undergraduate and graduate students, professionals, and researchers in the field of solid-state physics, materials science, surface science and chemical engineering.
This book covers the applications of biopolymers in the various fields of engineering where biopolymers are being employed. Included are chapters on applications of biopolymers in biotechnology, in construction and civil engineering, in tissue engineering, dairy technology, packaging, and more. Covered in these chapters are in-depth discussions on the fundamentals of biopolymers, such as synthesis, fabrication technologies and properties. This book also focuses on the applications of biopolymers in the construction, electronics, mechanical engineering, sensing, textiles, tissue engineering, and bio engineering. Readers will find comprehensive knowledge on the life cycled analysis, biodegradability, and advances in the field of bio polymers.
This book examines the current state of the art, new challenges, opportunities, and applications in the area of polymer nanocomposites. Special attention has been paid to the processing-morphology-structure-property relationship of the system. Various unresolved issues and new challenges in the field of polymer nanocompostes are discussed. The influence of preparation techniques (processing) on the generation of morphologies and the dependence of these morphologies on the properties of the system are treated in detail. This book also illustrates different techniques used for the characterization of polymer nanocomposites. The handpicked selection of topics and expert contributors across the globe make this survey an outstanding resource reference for anyone involved in the field of polymer nanocompostes for advanced technologies.
This volume provides a selection of chapters on new developments in various areas of clinical medicine, including dental, surgery, and general practice. These scientific chapters analyze the diagnostic processes and inform of new and novel diagnostic techniques. This book is divided into two sections; the first section contains review papers and includes an overview of experimental and clinical medicine, explaining its history to modern times. The second section presents a selection of original research papers from respected authors on a variety of topics.
This is the first volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. Advances in Elastomers discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This first volume focuses on advances on the blends and interpenetrating networks (IPNs) of elastomers.
Recycling of Polyethylene Terephthalate Bottles provides an overview of PET chemistry, highlighting the main degradation, depolymerization processes and pathways of PET, along with the applications of recycled monomers derived from PET waste. The latest methodologies of recycling and feedstock recovery are covered, providing critical foundational information. In addition, the book discusses a range of established methods of polymer recycling, with an emphasis on real world industrial case studies and the latest academic research. Users will find in-depth lifecycle and cost analysis of each waste management method, comparing the suitability and feasibility of each to support the decision -making process. Polyethylene Terephthalate (PET) is the most recycled plastic in the world, but still represents a significant amount of landfill waste. This book presents an update on new regulations, providing recommendations for new opportunities in this area, including new processing methods and applications for recycled PET.
Provides a description about biomaterials, classification and fabrication technologies used in the development of nanostructured biomaterials. Provides a brief account of physicochemical attributes of nanoparticles and its role in summarizing applications of nanobiomaterials. Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials. Presents an up-to-date and highly structured reference source for students, researchers and practitioners working in biomedical, biotechnological and engineering fields. Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine/nanobiology and nanoremediation.
This book highlights recent developments related to fabrication and utilization of nanoparticle-engineered metal matrices and their composites linked to the heavy industries, temperature fasteners, high-pressure vessels, and heavy turbines, etc. The mechanical properties of newly developed metallic composites are discussed in terms of tensile modulus, hardness, ductility, crack propagation, elongation, and chemical inertness. This book presents the design, development, and implementation of state-of-the-art methods linked to nanoparticle-reinforced metal nanocomposites for a wide variety of applications. Therefore, in a nutshell, this book provides a unique platform for researchers and professionals in the area of nanoparticle-reinforced metal nanocomposites.
Nanofibers are possible solutions for a wide spectrum of research and commercial applications and utilizing inexpensive bio-renewable and agro waste materials to produce nanofibers can lower manufacturing cost via electrospinning. This book explains synthesis of green, biodegradable, and environmentally friendly nanofibers from bioresources, their mechanical and morphological characteristics along with their applications across varied areas. It gives an elaborate idea on conductive polymers for tissue engineering application as well. Features: Provides insight about electrospun nanofibers from green, biodegradable and environmentally friendly bio resources. Reviews surface characterization of electrospun fibers. Covers diversified applications such as cancer treatment, COVID-19 solutions, food packaging applications, textile materials, and flexible electronic devices. Describes the combined use of 3D printing and electrospinning for tissue engineering scaffolds. Includes Melt electrospinning technique and its advantages over Solution electrospinning This book aims at Researchers and Graduate Students in Material Science and Engineering, Environmental Engineering, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Biomedical Engineering.
This book covers the latest developments in phenolic foams and their applications. Compared with polystyrene and polyurethane foams, phenolic foams are known as third-generation polymeric foams. Phenolic foams exhibit excellent fire-retardant properties, including low flammability, low peak heat release rate, no dripping during combustion, and low toxicity. This book discusses various aspects of phenolic foams including properties, synthesis, fabrication methodologies, and applications. The contents also cover the methods for toughening of phenolic foams to make them more widely applicable. This book is of interest to both academics and industry alike. It is also a useful reference for fire safety regulators and policy-makers looking for new materials and methods for sustainable fire protection. |
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|