![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It 's a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.
Select the Optimal Model for Interpreting Multivariate Data Introduction to Multivariate Analysis: Linear and Nonlinear Modeling shows how multivariate analysis is widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Along with the basic concepts of various procedures in traditional multivariate analysis, the book covers nonlinear techniques for clarifying phenomena behind observed multivariate data. It primarily focuses on regression modeling, classification and discrimination, dimension reduction, and clustering. The text thoroughly explains the concepts and derivations of the AIC, BIC, and related criteria and includes a wide range of practical examples of model selection and evaluation criteria. To estimate and evaluate models with a large number of predictor variables, the author presents regularization methods, including the L1 norm regularization that gives simultaneous model estimation and variable selection. For advanced undergraduate and graduate students in statistical science, this text provides a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. It also introduces linear and nonlinear statistical modeling for researchers and practitioners in industrial and systems engineering, information science, life science, and other areas.
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It 's a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.
|
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
|