Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 26 matches in All Departments
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes -- Processing and Characterization and Applications -- this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. An exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses: * Synthesis, fabrication, and characterization of nanocoatings * The sol-gel method and electrophoretic deposition * Thermal and plasma spraying * Hydroxyapatite and organically modified coatings * Bioceramics and bioactive glass-based coatings * Hydrothermal crystallization and self-healing effects * Physical and chemical vapor deposition * Layered assembled polyelectrolyte films With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes -- Processing and Characterization and Applications -- this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. Building on the theoretical and methodological fundamentals of coatings as presented in the first volume, Applications covers: * Biological/biomedical implants and other applications of carbon-based materials * Control of drug release from coatings * MIcrofluidic and biosensing/bioactive coatings and applications * Surfaces and coatings of orthopedic, dental, and other implants * Sol-gel-derived hydroxyapatite coatings on metallic implants * Impedance spectroscopy With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field. The set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine. Topics include: * Implants and implanted devices * Organically modified coatings * Orthopedic and dental implants * Control of drug release * Biosensing and bioactive coatings * Thermal and plasma spraying * Hydrothermal, physical, and chemical vapor deposition * Impedance spectroscopy * Hydroxyapatite nanocoatings With chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes -- Processing and Characterization and Applications -- to cover a subject that is truly fundamental to the success of biotechnological pursuits.
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the processing and properties of organic thin films, devices, and coatings for clean energy applications. Topics covered include:
A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books also feature figures, tables, and images that will aid research and help professionals acquire and maintain a solid grasp of this burgeoning field. The Handbook of Nanostructured Thin Films and Coatings is composed of this volume and two others: Nanostructured Thin Films and Coatings, Functional Properties Nanostructured Thin Films and Coatings, Mechanical Properties
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This first volume, Nanostructured Thin Films and Coatings: Mechanical Properties, concentrates on essential properties such as hardness, toughness, and adhesion. It looks at process and performance and offers a detailed analysis of theories and size effect. It also covers:
This book presents an industrial perspective on diamond and metal-containing amorphous carbon nanostructured coatings and transition metal nitride-based nanolayered and nanocomposite coatings. It also covers polymer films, from nanoscale synthesis to macroscale functionality. A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books also feature figures, tables, and images that will aid research and help professionals acquire and maintain a solid grasp of this burgeoning field. ? ? The Handbook of Nanostructured Thin Films and Coatings is composed of this volume and two others: Nanostructured Thin Films and Coatings: Functional Properties Organic Nanostructured Thin Film Devices and Coatings for Clean Energy
Edited by a leading expert and with contributions from pioneers, the three-volume Handbook of Nanostructured Thin Films and Coatings is a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. The first volume, Nanostructured Thin Films and Coatings: Mechanical Properties, covers the mechanical properties (i.e., hardness, toughness, and adhesion), including processing, properties, and performance. It also offers a detailed analysis of theories and size effect, in addition to other key topics. Volume Two, Nanostructured Thin Films and Coatings: Functional Properties, focuses on functional properties (i.e., optical, electronic, and electrical) and related devices and applications. The third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the processing and properties of organic thin films, devices, and coatings for clean energy applications. A complete resource, this handbook provides detailed explanations for newcomers and the latest research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books feature figures, tables, and images that aid researchers and help professionals acquire and maintain a solid grasp of this burgeoning field.
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes-Processing and Characterization and Applications-this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. An exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses: Synthesis, fabrication, and characterization of nanocoatings The sol-gel method and electrophoretic deposition Thermal and plasma spraying Hydroxyapatite and organically modified coatings Bioceramics and bioactive glass-based coatings Hydrothermal crystallization and self-healing effects Physical and chemical vapor deposition Layered assembled polyelectrolyte films With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Materials for Energy offers a comprehensive overview of the latest developments in materials for efficient and sustainable energy applications, including energy conversion, storage, and smart applications. Discusses a wide range of material types, such as nanomaterials, carbonaceous electrocatalysts and electrolytes, thin films, phase change materials, 2D energy materials, triboelectric materials, and membrane materials Describes applications that include flexible energy storage devices, sensors, energy storage batteries, fuel and solar cells, photocatalytic wastewater treatment, and more Highlights current developments in energy conversion, storage, and applications from a materials angle Aimed at researchers, engineers, and technologists working to solve alternative energy issues, this work illustrates the state of the art and latest technologies in this important field.
Functional Thin Films Technology features the functional aspects of thin films, such as their application in solar selective absorbers, fiber lasers, solid oxide fuel cells, piezo-related areas, catalysts, superhydrophobicity, semiconductors, and trace pesticides detection. It highlights developments and advances in the preparation, characterization, and applications of functional micro-/nano-scaled films and coatings. This book Presents technologies aimed at functionality used in nanoelectronics, solar selective absorbers, solid oxide fuel cells, piezo-applications, and sensors Covers absorbers, catalysts, anodic aluminum oxide, superhydrophobics, and semiconductor devices Features a chapter on transport phenomena associated to structures Discusses transport phenomena and material informatics This second volume in the two-volume set, Protective Thin Coatings and Functional Thin Films Technology, will benefit industry professionals and researchers working in areas related to semiconductors, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and materials engineering.
Hard or protective coatings are widely used in conventional and modern industries and will continue to play a key role in future manufacturing, especially in the micro and nano areas. Protective Thin Coatings Technology highlights the developments and advances in the preparation, characterization, and applications of protective micro-/nanoscaled films and coatings. This book Covers technologies for sputtering of flexible hard nanocoatings, deposition of solid lubricating films, and multilayer transition metal nitrides Describes integrated nanomechanical characterization of hard coatings, corrosion and tribo-corrosion of hard coatings, and high entropy alloy films and coatings Investigates thin films and coatings for high-temperature applications, nanocomposite coatings on magnesium alloys, and the correlation between coating properties and industrial applications Features various aspects of hard coatings, covering advanced sputtering technologies, structural characterizations, and simulations, as well as applications This first volume in the two-volume set, Protective Thin Coatings and Functional Thin Films Technology, will benefit industry professionals and researchers working in areas related to semiconductors, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and material engineering.
Materials for Energy offers a comprehensive overview of the latest developments in materials for efficient and sustainable energy applications, including energy conversion, storage, and smart applications. Discusses a wide range of material types, such as nanomaterials, carbonaceous electrocatalysts and electrolytes, thin films, phase change materials, 2D energy materials, triboelectric materials, and membrane materials Describes applications that include flexible energy storage devices, sensors, energy storage batteries, fuel and solar cells, photocatalytic wastewater treatment, and more Highlights current developments in energy conversion, storage, and applications from a materials angle Aimed at researchers, engineers, and technologists working to solve alternative energy issues, this work illustrates the state of the art and latest technologies in this important field.
Covers a variety materials, including hard materials, soft materials, metals, and composites Describes nanotechnology approaches, modern piezoelectric techniques, and physical and mechanical studies of the structure-sensitive properties of the materials Reviews advanced manufacturing for antenna applications and embroidered RFID tags for wearable applications Considers additive manufacturing of cellular solids and metal additive manufacturing Discusses advanced materials for sound absorption
Advances in Magnetic Materials: Processing, Properties, and Performance discusses recent developments of magnetic materials, including fabrication, characterization and applications in the aerospace, biomedical, and semiconductors industries. With contributions by international professionals who possess broad and varied expertise, this volume encompasses both bulk materials and thin films and coatings for magnetic applications. A timely reference book that describes such things as ferromagnetism, nanomaterials, and Fe, ZnO, and Co-based materials, Advances in Magnetic Materials is an ideal text for students, researchers, and professionals working in materials science. Describes recent developments of magnetic materials, including fabrication, characterization, and applications Addresses a variety of industrial applications, such as aerospace, biomedical, and semiconductors Discusses bulk materials and thin films and coatings Covers ferromagnetism, nanomaterials, Fe, ZnO, and Co-based materials Contains the contributions of international professionals with broad and varied expertise Covers a holistic range of magnetic materials in various aspects of process, properties, and performance
From everyday applications to the rise of automation, devices have become ubiquitous. Specific materials are employed in specific devices because of their particular properties, including electrical, thermal, magnetic, mechanical, ferroelectric, and piezoelectric. Materials for Devices discusses materials selection for optimal application and highlights current materials developments in gas sensors, optical devices, mechanoelectrical devices, and medical and biological devices. Explains how to select the right material for the right device Includes 2D materials, thin films, smart piezoelectric films, and more Presents details on organic solar cells Describes thin films in sensors, actuators, and LEDs Covers thin films and elastic polymers in biomedical devices Discusses growth and characterization of intrinsic magnetic topological insulators This work is aimed at researchers, technologists, and advanced students in materials and electrical engineering and related fields who are interested in developing sensors or devices.
Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characterization and applications of hydroxyapatite to provide timely information for active researchers and newcomers alike. In eight carefully reviewed chapters, hydroxyapatite experts from the United States, Japan, Singapore, and China present the latest on topics ranging from deposition processes to biomedical applications in implants and drug delivery. This book discusses: Magnetron sputtering and electrochemical deposition The modification of hydroxyapatite properties by sol-gel deposition to incorporate other elements found in natural bones, such as zinc, magnesium, and fluorine The use of pure hydroxyapatite in drug delivery applications The growth or self-assembly of hydroxyapatite on shape memory alloy Hydroxyapatite composite coatings-with carbon nanotubes, titanium dioxide (TiO2), and others-on the titanium alloy Offering valuable insights and a wealth of data, including numerous tables and figures, this is a rich source of information for research on hydroxyapatite coatings. Each chapter also covers material that provides an accessible stepping stone for those who are new to the field.
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the processing and properties of organic thin films, devices, and coatings for clean energy applications. Topics covered include: Thin-film solar cells based on the use of polycrystalline thin-film materials Anodized titania nanotube array and its application in dye-sensitized solar cells Progress and challenges associated with photovoltaic applications of silicon nanocrystalline materials Semiconductive nanocomposite films for clean environment Thin-coating technologies and applications in high-temperature solid oxide fuel cells Nanoscale organic molecular thin films for information memory applications A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books also feature figures, tables, and images that will aid research and help professionals acquire and maintain a solid grasp of this burgeoning field. The Handbook of Nanostructured Thin Films and Coatings is composed of this volume and two others: Nanostructured Thin Films and Coatings, Functional Properties Nanostructured Thin Films and Coatings, Mechanical Properties
Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characterization and applications of hydroxyapatite to provide timely information for active researchers and newcomers alike. In eight carefully reviewed chapters, hydroxyapatite experts from the United States, Japan, Singapore, and China present the latest on topics ranging from deposition processes to biomedical applications in implants and drug delivery. This book discusses: Magnetron sputtering and electrochemical deposition The modification of hydroxyapatite properties by sol-gel deposition to incorporate other elements found in natural bones, such as zinc, magnesium, and fluorine The use of pure hydroxyapatite in drug delivery applications The growth or self-assembly of hydroxyapatite on shape memory alloy Hydroxyapatite composite coatings-with carbon nanotubes, titanium dioxide (TiO2), and others-on the titanium alloy Offering valuable insights and a wealth of data, including numerous tables and figures, this is a rich source of information for research on hydroxyapatite coatings. Each chapter also covers material that provides an accessible stepping stone for those who are new to the field.
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This first volume, Nanostructured Thin Films and Coatings: Mechanical Properties, concentrates on essential properties such as hardness, toughness, and adhesion. It looks at process and performance and offers a detailed analysis of theories and size effect. It also covers: Fundamentals of hard and superhard nanocomposites and heterostructures Determination of hardness and modulus of thin films Fracture toughness and interfacial adhesion strength of thin films: Indentation and scratch experiments and analysis Toughness and toughening of hard nanocomposite coatings Processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings Use of nanomechanics to optimize coatings for cutting tools Electrolytic deposition of nanocomposite coatings: Processing, properties, and applications This book presents an industrial perspective on diamond and metal-containing amorphous carbon nanostructured coatings and transition metal nitride-based nanolayered and nanocomposite coatings. It also covers polymer films, from nanoscale synthesis to macroscale functionality. A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide
Whether an airplane or a space shuttle, a flying machine requires advanced materials to provide a strong, lightweight body and a powerful engine that functions at high temperature. The Aerospace Materials Handbook examines these materials, covering traditional superalloys as well as more recently developed light alloys. Capturing state-of-the-art developments in materials research for aeronautical and aerospace applications, this book provides a timely reference for both newcomers and veteran researchers in the field. The chapters address developments in bulk materials, coatings, traditional materials, and new materials. Beginning with an overview of superalloys, including nickel-, nickel-iron-, and cobalt-based superalloys, the text covers machining, laser cladding and alloying, corrosion performance, high-temperature oxidation, thermal spraying, and nanostructured coatings. It also includes four categories of composites used in aerospace: metal matrix, polymer, carbon nanotube-reinforced polymer, and self-healing composites. The text describes preparation, processing, and fatigue of lightweight magnesium alloys, as well as an exciting new class of materials-aerogels. This book brings readers to the cutting edge of research in materials for aerospace and aeronautics. It provides an entry point into this field and presents details to stimulate future research. This unique, up-to-date resource offers knowledge to enable practitioners to develop faster, more efficient, and more reliable air- and spacecraft.
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This second volume, Nanostructured Thin Films and Coatings: Functional Properties, focuses on functional properties (i.e., optical, electronic, and electrical) and related devices and applications. It also addresses topics such as: Large-scale fabrication of functional thin films using nanoarchitecture via chemical routes Fabrication and characterization of SiC nanostructured/nanocomposite films Low-dimensional nanocomposite fabrication and its applications Optical and optoelectronic properties of silicon nanocrystals embedded in SiO2 matrix Electrical properties of silicon nanocrystals embedded in amorphous SiO2 matrix Optical aspects of properties and applications of sol-gel-derived nanostructured thin films Controllably micro/nanostructured films and devices Thin-film shape memory alloy for microsystem applications A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books also feature figures, tables, and images that will aid research and help professionals acquire and maintain a solid grasp of this burgeoning field. The Handbook of Nanostructured Thin Films and Coatings is composed of this volume and two others: Nanostructured Thin Films and Coatings: Mechanical Properties Organic Nanostructured Thin Film Devices and Coatings for Clean Energy
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field. The set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine. Topics include: Implants and implanted devices Organically modified coatings Orthopedic and dental implants Control of drug release Biosensing and bioactive coatings Thermal and plasma spraying Hydrothermal, physical, and chemical vapor deposition Impedance spectroscopy Hydroxyapatite nanocoatings With chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes-Processing and Characterization and Applications-to cover a subject that is truly fundamental to the success of biotechnological pursuits.
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This second volume, Nanostructured Thin Films and Coatings:
Functional Properties, focuses on functional properties (i.e.,
optical, electronic, and electrical) and related devices and
applications. It also addresses topics such as:
A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books also feature figures, tables, and images that will aid research and help professionals acquire and maintain a solid grasp of this burgeoning field. The Handbook of Nanostructured Thin Films and Coatings is
composed of this volume and two others: Organic Nanostructured Thin Film Devices and Coatings for Clean Energy
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes-Processing and Characterization and Applications-this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. Building on the theoretical and methodological fundamentals of coatings as presented in the first volume, Applications covers: Biological/biomedical implants and other applications of carbon-based materials Control of drug release from coatings MIcrofluidic and biosensing/bioactive coatings and applications Surfaces and coatings of orthopedic, dental, and other implants Sol-gel-derived hydroxyapatite coatings on metallic implants Impedance spectroscopy With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Advances in Magnetic Materials: Processing, Properties, and Performance discusses recent developments of magnetic materials, including fabrication, characterization and applications in the aerospace, biomedical, and semiconductors industries. With contributions by international professionals who possess broad and varied expertise, this volume encompasses both bulk materials and thin films and coatings for magnetic applications. A timely reference book that describes such things as ferromagnetism, nanomaterials, and Fe, ZnO, and Co-based materials, Advances in Magnetic Materials is an ideal text for students, researchers, and professionals working in materials science. Describes recent developments of magnetic materials, including fabrication, characterization, and applications Addresses a variety of industrial applications, such as aerospace, biomedical, and semiconductors Discusses bulk materials and thin films and coatings Covers ferromagnetism, nanomaterials, Fe, ZnO, and Co-based materials Contains the contributions of international professionals with broad and varied expertise Covers a holistic range of magnetic materials in various aspects of process, properties, and performance
Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this book: Presents the current status of hard-yet-tough ceramic coatings Reviews various toughness evaluation methods for films and hard coatings Explores the toughness and toughening mechanisms of porous thin films and laser-treated surfaces Examines adhesions of the film/substrate interface and the characterization of coating adhesion strength Discusses nanoindentation determination of fracture toughness, resistance to cracking, and sliding contact fracture phenomena Toughening and toughness measurement (of films and coatings) are two related, yet separate, fields of great importance in today's nanotechnology world. Thin Films and Coatings: Toughening and Toughness Characterization is a timely reference written in such a way that novices will find it a stepping stone to the field and veterans will find it a rich source of information for their research. |
You may like...
|