![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
First designed to generate personalized recommendations to users in the 90s, recommender systems apply knowledge discovery techniques to users' data to suggest information, products, and services that best match their preferences. In recent decades, we have seen an exponential increase in the volumes of data, which has introduced many new challenges. Divided into two volumes, this comprehensive set covers recent advances, challenges, novel solutions, and applications in big data recommender systems. Volume 1 contains 14 chapters addressing foundations, algorithms and architectures, approaches for big data, and trust and security measures. Volume 2 covers a broad range of application paradigms for recommender systems over 22 chapters.
The fields of Big Data and the Internet of Things (IoT) have seen tremendous advances, developments, and growth in recent years. The IoT is the inter-networking of connected smart devices, buildings, vehicles and other items which are embedded with electronics, software, sensors and actuators, and network connectivity that enable these objects to collect and exchange data. The IoT produces a lot of data. Big data describes very large and complex data sets that traditional data processing application software is inadequate to deal with, and the use of analytical methods to extract value from data. This edited book covers analytical techniques for handling the huge amount of data generated by the Internet of Things, from architectures and platforms to security and privacy issues, applications, and challenges as well as future directions.
This volume offers readers various perspectives and visions for cutting-edge research in ubiquitous healthcare. The topics emphasize large-scale architectures and high performance solutions for smart healthcare, healthcare monitoring using large-scale computing techniques, Internet of Things (IoT) and big data analytics for healthcare, Fog Computing, mobile health, large-scale medical data mining, advanced machine learning methods for mining multidimensional sensor data, smart homes, and resource allocation methods for the BANs. The book contains high quality chapters contributed by leading international researchers working in domains, such as e-Health, pervasive and context-aware computing, cloud, grid, cluster, and big-data computing. We are optimistic that the topics included in this book will provide a multidisciplinary research platform to the researchers, practitioners, and students from biomedical engineering, health informatics, computer science, and computer engineering.
First designed to generate personalized recommendations to users in the 90s, recommender systems apply knowledge discovery techniques to users' data to suggest information, products, and services that best match their preferences. In recent decades, we have seen an exponential increase in the volumes of data, which has introduced many new challenges. Divided into two volumes, this comprehensive set covers recent advances, challenges, novel solutions, and applications in big data recommender systems. Volume 2 covers a broad range of application paradigms for recommender systems over 22 chapters. Volume 1 contains 14 chapters addressing foundations, algorithms and architectures, approaches for big data, and trust and security measures.
|
You may like...
Oceans and Human Health - Opportunities…
Lora Fleming, Lota B Alcantara Creencia, …
Hardcover
R4,909
Discovery Miles 49 090
Ecosystem Services: From Biodiversity to…
Guy Woodward, David Bohan
Hardcover
R4,713
Discovery Miles 47 130
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,726
Discovery Miles 27 260
|