Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This volume is developed on the broad theme of plant-associated bacteria. It is envisioned as a resource volume for researchers working with beneficial and harmful groups of bacteria associated with crop plants. The book is divided into two parts. Part I (9 chapters) on beneficial bacteria includes chapters on symbiotic nitrogen fixers, diazotrophs, epiphytes, endophytes and rhizosphere bacteria and deleterious rhizobacteria. Part II (8 chapters) consists of detailed descriptions of 8 genera of plant pathogenic bacteria: Agrobacterium, Clavibacter, soft-rot Erwinia, Pseudomonas, Xanthomonas, Ralstonia, Burkholderia and Acidovorax and Herbaspirillum. There is an opening chapter on the plant-associated bacteria survey, molecular phylogeny, genomics and recent advances. And each chapter includes terminology/definitions, molecular phylogeny, methods that can be used (both traditional and latest molecular tools) and applications.
With contributions from more than 30 internationally renowned experts, this book combines coverage of theory with coverage of global practices. Highlighting the day-to-day challenges of organic crop management for cost-effective real-world application, the book explores the biological control of diseases in 12 major crops. It focuses on the use of host plant resistance through transgenics and induced systemic resistance as a part of biological control. Topics covered include the role of biocontrol agents for signalling resistance, effective ecofriendly alternative to combat bacterial, fungal, and viral infestation, and transgenic crops in disease management.
There is suf?cient need to document all the available data on biological control of rice diseases in a small volume. Part of this need rests on the global importance of rice to human life. In the ?rst chapter, I have tried to show that rice is indeed life for most people in Asia and shortages in production and availability can lead to a food crisis. While rice is cultivated in most continents, biological disease management attains special relevance to rice farmers of Africa, Asia, and also perhaps, Latin America. These farmers are resource-poor and might not be able to afford the cost of expensive chemical treatments to control devastating rice pathogens such as Magnaporthe oryzae (blast), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), Rhizoctonia solani (sheath blight) and the virus, rice tungro disease. In an earlier volume that I developed under the title, Biological Control of Crop Diseases (Dekker/CRC Publishers, 2002), I included transgenic crops generated for the management of plant pathogens as biological control under the umbrella of a broad de?nition. Dr Jim Cook who wrote the Foreword for the volume lauded the inclusion of transgenic crops and induced systemic resistance (ISR) as a positive trend toward acceptance of host plant resistance as part of biocontrol. I continue to subscribe to this view.
|
You may like...
|