Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
There are a large number of books available on fuel cells; however,
the majority are on specific types of fuel cells such as solid
oxide fuel cells, proton exchange membrane fuel cells, or on
specific technical aspects of fuel cells, e.g., the system or stack
engineering. Thus, there is a need for a book focused on materials
requirements in fuel cells. Key Materials in Low-Temperature Fuel
Cells is a concise source of the most important and key materials
and catalysts in low-temperature fuel cells. A related book will
cover key materials in high-temperature fuel cells. The two books
form part of the "Materials for Sustainable Energy &
Development" series.
This textbook covers essential electrochemistry and materials science content and provides an extensive collection of examples in order to bridge the gap between engineering students' basic knowledge and the concrete skills they need to handle practical problems in fuel cells. The book starts with an introduction to the basic thermodynamics and electrochemistry principles and techniques in fuel cells. It subsequently discusses fuel cell operation principles, electrocatalysts, electrode materials, cell and system configuration and technologies in low-temperature fuel cells such as alkaline fuel cells and proton exchange membrane fuel cells, and in high-temperature fuel cells including solid oxide and molten carbonate fuel cells. Other energy conversion and storage technologies such as supercapacitors, batteries and electrolysis are also covered. A special chapter on laboratory experiments with fuel cells is also included, which can be conducted in conjunction with classroom teaching. Each chapter includes problems and exercises. The book provides students with an engineering background essential information on the basic thermodynamics, electrochemistry and materials of fuel cells, the most efficient and environmentally friend energy conversion technologies, all in a single book.
Innovation through specific and rational design and functionalization has led to the development of a wide range of mesoporous materials with varying morphologies (hexagonal, cubic, rod-like), structures (silicates, carbons, metal oxides), and unique functionalities (doping, acid functionalization) that currently makes this field one of the most exciting in materials science and energy applications. This book focuses primarily on the rapid progress in their application in energy conversion and storage technologies, including supercapacitor, Li-ion battery, fuel cells, solar cells, and photocatalysis (water splitting) and will serve as a valuable reference for researchers in the field
Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance. It offers an overview on the principles, classifications, and types of fuels used in fuel cells, and discusses the critical properties, design, and advances made in various sealing materials. It provides an extensive review on the design, configuration, fabrication, modeling, materials, and stack performance of -SOFC technology, and addresses the advancement and challenges in the synthesis, characterization, and fundamental understanding of the catalytic activity of nitrogen-carbon, carbon, and noncarbon-based electro catalysts for PEM fuel cells. The authors explore the atomic layer deposition (ALD) technique, summarize the advancements in the fundamental understanding of the most successful Nafion membranes, and focus on the development of alternative and composite membranes for direct alcohol fuel cells (DAFCs). They also review current challenges and consider future development in the industry. Includes 17 chapters, 262 figures, and close to 2000 references Provides an extensive review of the carbon, nitrogen-carbon, and noncarbon-based electro catalysts for fuel cells Presents an update on the latest materials development in conventional fuel cells and emerging fuel cells This text is a single-source reference on the latest advances in the nano-structured materials and electro catalysts for fuel cells, the most efficient and emerging energy conversion technologies for the twenty-first century. It serves as a valuable resource for students, materials engineers, and researchers interested in fuel cell technology.
Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.
Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance. It offers an overview on the principles, classifications, and types of fuels used in fuel cells, and discusses the critical properties, design, and advances made in various sealing materials. It provides an extensive review on the design, configuration, fabrication, modeling, materials, and stack performance of -SOFC technology, and addresses the advancement and challenges in the synthesis, characterization, and fundamental understanding of the catalytic activity of nitrogen-carbon, carbon, and noncarbon-based electro catalysts for PEM fuel cells. The authors explore the atomic layer deposition (ALD) technique, summarize the advancements in the fundamental understanding of the most successful Nafion membranes, and focus on the development of alternative and composite membranes for direct alcohol fuel cells (DAFCs). They also review current challenges and consider future development in the industry. Includes 17 chapters, 262 figures, and close to 2000 references Provides an extensive review of the carbon, nitrogen-carbon, and noncarbon-based electro catalysts for fuel cells Presents an update on the latest materials development in conventional fuel cells and emerging fuel cells This text is a single-source reference on the latest advances in the nano-structured materials and electro catalysts for fuel cells, the most efficient and emerging energy conversion technologies for the twenty-first century. It serves as a valuable resource for students, materials engineers, and researchers interested in fuel cell technology.
Innovation through specific and rational design and functionalization has led to the development of a wide range of mesoporous materials with varying morphologies (hexagonal, cubic, rod-like), structures (silicates, carbons, metal oxides), and unique functionalities (doping, acid functionalization) that currently makes this field one of the most exciting in materials science and energy applications. This book focuses primarily on the rapid progress in their application in energy conversion and storage technologies, including supercapacitor, Li-ion battery, fuel cells, solar cells, and photocatalysis (water splitting) and will serve as a valuable reference for researchers in the field
Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.
|
You may like...
|