|
|
Showing 1 - 1 of
1 matches in All Departments
Trends in Deep Learning Methodologies: Algorithms, Applications,
and Systems covers deep learning approaches such as neural
networks, deep belief networks, recurrent neural networks,
convolutional neural networks, deep auto-encoder, and deep
generative networks, which have emerged as powerful computational
models. Chapters elaborate on these models which have shown
significant success in dealing with massive data for a large number
of applications, given their capacity to extract complex hidden
features and learn efficient representation in unsupervised
settings. Chapters investigate deep learning-based algorithms in a
variety of application, including biomedical and health
informatics, computer vision, image processing, and more. In recent
years, many powerful algorithms have been developed for matching
patterns in data and making predictions about future events. The
major advantage of deep learning is to process big data analytics
for better analysis and self-adaptive algorithms to handle more
data. Deep learning methods can deal with multiple levels of
representation in which the system learns to abstract higher level
representations of raw data. Earlier, it was a common requirement
to have a domain expert to develop a specific model for each
specific application, however, recent advancements in
representation learning algorithms allow researchers across various
subject domains to automatically learn the patterns and
representation of the given data for the development of specific
models.
|
You may like...
Operation Joktan
Amir Tsarfati, Steve Yohn
Paperback
(1)
R250
R230
Discovery Miles 2 300
Loot
Nadine Gordimer
Paperback
(2)
R367
R340
Discovery Miles 3 400
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.