![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Dynamic Mechanical and Creep-Recovery Behaviour of Polymer-Based Composites: Mechanical and Mathematical Modeling covers mathematical modelling, dynamic mechanical analysis, and the ways in which various factors impact the creep-recovery behaviour of polymer composites. The effects of polymer molecular weight, plasticizers, cross-linking agents, and chemical treatment of filler material are addressed and information on thermoplastic and thermosetting polymer-based composites is also covered, including their various applications and the advantages and disadvantages of their use in different settings. The final 2 chapters of the book cover mathematical modeling of creep-recovery behavior for polymer composites and software-based simulation of creep-recovery in polymer composites, respectively. Dynamic Mechanical and Creep-Recovery Behaviour of Polymer-Based Composites: Mechanical and Mathematical Modeling covers mathematical modelling, dynamic mechanical analysis, and the ways in which various factors impact the creep-recovery behaviour of polymer composites. The effects of polymer molecular weight, plasticizers, cross-linking agents, and chemical treatment of filler material are addressed and information on thermoplastic and thermosetting polymer-based composites is also covered, including their various applications and the advantages and disadvantages of their use in different settings. The final 2 chapters of the book cover mathematical modeling of creep-recovery behavior for polymer composites and software-based simulation of creep-recovery in polymer composites, respectively.
Biocomposites – Bio-based Fibres and Polymers from Renewable Resources: Processing, Performance, Durability and Applications provides a systematic and comprehensive review of recent developments in this important area of research. Chapters discuss novel techniques for processing and the characterization of biocomposites derived from renewable resources, focusing on durability, strength prediction, aging methods and performance evaluation. Future trends, directions and opportunities are also addressed. Readers will find an up-to-date summary of recent research findings that have been conducted on biocomposites, making this an essential reference resource for academic and industrial researchers and anyone working in the development of innovative materials from renewable resources.
This book delves into the mechanical analysis of the nanomaterials and polymer nanocomposite materials by shedding light on the mechanical performance of nanomaterials, elasticity and viscoelasticity behaviors of polymer nanocomposites, the laminate and sandwich theories, durability and fatigue behaviors. The chapters in this book bring together leading experts in the field to provide an update of the latest scientific results and a fully holistic understanding of the mechanical performance of these materials. The book interests the academic and industrial researchers, R&D managers and engineers working in material and nanomaterial sciences, polymer science and technology, automotive and aerospace engineering, construction and sporting goods, etc. The book also targets the readers that may have no prior knowledge about composite and nanocomposite materials.
|
![]() ![]() You may like...
Madam & Eve 2018 - The Guptas Ate My…
Stephen Francis, Rico Schacherl
Paperback
The Well-Gardened Mind - The Restorative…
Sue Stuart-Smith
Paperback
The Judicial System - The Administration…
Carlo Guarnieri, Patrizia Pederzoli
Paperback
R980
Discovery Miles 9 800
A Latter-Day Saint Ode to Jesus - The…
Edward Kenneth Watson
Hardcover
|