0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Pro Deep Learning with TensorFlow 2.0 - A Mathematical Approach to Advanced Artificial Intelligence in Python (Paperback, 2nd... Pro Deep Learning with TensorFlow 2.0 - A Mathematical Approach to Advanced Artificial Intelligence in Python (Paperback, 2nd ed.)
Santanu Pattanayak
R1,706 R1,401 Discovery Miles 14 010 Save R305 (18%) Ships in 10 - 15 working days

This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0. Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You'll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you'll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE. Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications. What You Will Learn Understand full-stack deep learning using TensorFlow 2.0 Gain an understanding of the mathematical foundations of deep learning Deploy complex deep learning solutions in production using TensorFlow 2.0 Understand generative adversarial networks, graph attention networks, and GraphSAGE Who This Book Is For: Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.

Quantum Machine Learning with Python - Using Cirq from Google Research and IBM Qiskit (Paperback, 1st ed.): Santanu Pattanayak Quantum Machine Learning with Python - Using Cirq from Google Research and IBM Qiskit (Paperback, 1st ed.)
Santanu Pattanayak
R1,381 R1,132 Discovery Miles 11 320 Save R249 (18%) Ships in 10 - 15 working days

Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research. What You'll Learn Understand Quantum computing and Quantum machine learning Explore varied domains and the scenarios where Quantum machine learning solutions can be applied Develop expertise in algorithm development in varied Quantum computing frameworks Review the major challenges of building large scale Quantum computers and applying its various techniques Who This Book Is For Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning

Intelligent Projects Using Python - 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and... Intelligent Projects Using Python - 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras (Paperback)
Santanu Pattanayak
R1,178 Discovery Miles 11 780 Ships in 10 - 15 working days

Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python Key Features A go-to guide to help you master AI algorithms and concepts 8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillance Use TensorFlow, Keras, and other Python libraries to implement smart AI applications Book DescriptionThis book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle. What you will learn Build an intelligent machine translation system using seq-2-seq neural translation machines Create AI applications using GAN and deploy smart mobile apps using TensorFlow Translate videos into text using CNN and RNN Implement smart AI Chatbots, and integrate and extend them in several domains Create smart reinforcement, learning-based applications using Q-Learning Break and generate CAPTCHA using Deep Learning and Adversarial Learning Who this book is forThis book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Creator
John David Washington, Gemma Chan, … DVD R312 Discovery Miles 3 120
Colleen Pencil Crayons - Assorted…
 (1)
R285 R252 Discovery Miles 2 520
Peptine Pro Equine Hydrolysed Collagen…
 (2)
R359 R249 Discovery Miles 2 490
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Snookums Bath Crayons
R60 R35 Discovery Miles 350
Baby Dove Lotion Rich Moisture 200ml
R50 R33 Discovery Miles 330
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Brother 2504D Overlocker
R6,999 R5,299 Discovery Miles 52 990
Kookaburra Oversized Cooler Chair (Blue)
R900 R599 Discovery Miles 5 990
The Year Of Facing Fire - A Memoir
Helena Kriel Paperback R315 R271 Discovery Miles 2 710

 

Partners