![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Atomic Absorption Spectroscopy (AAS) is a well-established elemental analysis technology. It remains one of the most popular and cost-effective analysis tools used by chemists, physicists, and materials scientists worldwide. This second edition offers a concise introduction to AAS concepts, essential methodologies, and important applications. It has been comprehensively updated for the latest advances in AAS techniques and instruments. Highlights include: - Overviews of all basic atomic absorption concepts, including atomic line spectra theory, common sampling techniques, radiation sources, spectrometers, and detectors; - Coverage of hydride generation, cold vapor generation and electrothermal generation, as well as flow injection analysis (FIA) to enhance AAS analytical performance; - New sections on troubleshooting and quality control guidelines, chemometrics, and emerging fields of applications, including analysis of nanoparticles; and - Selected examples of standards for chemical analysis.
Glow discharge optical emission spectroscopy (GDOES) is an essential technique for the direct analysis of bulk solids, for elemental surface analysis and for the depth profiling of thin films and industrial coatings. The technique has shown rapid growth in numbers of instruments, in breadth of applications, in improved quantification in recent years and is now a recognised technique within the ISO, with two international standards. Glow Discharge Optical Emission Spectroscopy: A Practical Guide takes the reader on a journey through instrument operation, sample preparation, analysis, and reporting results. It follows two sets of samples through the whole process of analysis, brass samples for bulk analysis, and zinc-coated steel for depth profiling. Procedures are consistent with recent ISO standards and each step is loaded with hands-on tips and theoretical insight. The book also includes unique data tables on spectral interferences, molecular bands, self-absorption and relative sputtering rates. This book is designed for those using or managing GDOES instruments and for students interested in learning the technique from a hands-on perspective. It is also an invaluable aid to those considering the purchase of a GDOES instrument, or those using GDOES results, to understand in detail how the technique works and what is involved in maintaining the instrument and achieving high quality results.
This is the first book for atomic spectroscopists to present the basic principles of experimental designs, optimization and multivariate regression. Multivariate regression is a valuable statistical method for handling complex problems (such as spectral and chemical interferences) which arise during atomic spectrometry. However, the technique is underused as most spectroscopists do not have time to study the often complex literature on the subject. This practical introduction uses conceptual explanations and worked examples to give readers a clear understanding of the technique. Mathematics is kept to a minimum but, when required, is kept at a basic level. Practical considerations, interpretations and troubleshooting are emphasized and literature surveys are included to guide the reader to further work. The same dataset is used for all chapters dealing with calibration to demonstrate the differences between the different methodologies. Readers will learn how to handle spectral and chemical interferences in atomic spectrometry in a new, more efficient and cost-effective way.
Flow Analysis (FA) offers a very convenient and fast approach to enhance and automate 'preliminary steps' of analysis (sample dissolution, pretreatments, preconcentrations, etc.) for atomic spectrometric detectors (ASD). Moreover, flow manifolds can ease the well-known problem of sample introduction/presentation to atomisers or even expand the classical scope of atomic/elemental information, characterizing atomic spectrometry, into the realm of molecules and metal-compounds analysis (e.g. by resorting to coupled separation techniques). All these facts could explain both the extraordinary interest for research and the great importance for practical problem-solving achieved nowadays by FA-ASD. On the threshold of the new millennium when plasma emission and
mass spectrometry are so important and popular, the editor
considered it timely to produce a book which covers all present
atomic detectors and techniques where FA has been or can be
advantageously employed. The book has been conceived in three
separate parts: This monograph integrates the most popular aspects of FIA, its new developments for sample on-line treatments and on-line non-chromatographic and chromatographic separations (all typical 'flowanalysis') in connection with all branches of analytical atomic spectrometry. Thus, academics, researchers and routine users of analytical atomic spectrometry will find this book invaluable.
|
![]() ![]() You may like...Not available
|