0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Paperback, Softcover reprint of the... BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Paperback, Softcover reprint of the original 1st ed. 2015)
Bernardo RUGGERI, Tonia Tommasi, Sara Sanfilippo
R3,645 Discovery Miles 36 450 Ships in 10 - 15 working days

This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.  

BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Hardcover, 2015 ed.): Bernardo RUGGERI,... BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Hardcover, 2015 ed.)
Bernardo RUGGERI, Tonia Tommasi, Sara Sanfilippo
R3,891 Discovery Miles 38 910 Ships in 10 - 15 working days

This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane (R)), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Venom 2: Let There Be Carnage
Tom Hardy, Woody Harrelson, … DVD R156 Discovery Miles 1 560
Harry Potter Collectible Platform 9 3/4…
R699 R199 Discovery Miles 1 990
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Carolina Herrera Carolina Herrera Eau De…
R2,350 R1,325 Discovery Miles 13 250
Chicco Natural Feeling Teat (Regular…
R119 Discovery Miles 1 190
Sudocrem Skin & Baby Care Barrier Cream…
R70 Discovery Miles 700
Rotatrim A4 Paper Ream (80gsm)(500…
R97 Discovery Miles 970
Gotcha Anadigi 50M-WR Watch (Gents)
R399 R236 Discovery Miles 2 360
Mexico In Mzansi
Aiden Pienaar Paperback R360 R255 Discovery Miles 2 550
Bostik Glue Stick - Loose (25g)
R31 R19 Discovery Miles 190

 

Partners