Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This volume has been curated from two sources: presentations from the Conference on Rings and Polynomials, Technische Universität Graz, Graz, Austria, July 19 –24, 2021, and papers intended for presentation at the Fourth International Meeting on Integer-valued Polynomials and Related Topics, CIRM, Luminy, France, which was cancelled due to the pandemic. The collection ranges widely over the algebraic, number theoretic and topological aspects of rings, algebras and polynomials. Two areas of particular note are topological methods in ring theory, and integer valued polynomials. The book is dedicated to the memory of Paul-Jean Cahen, a coauthor or research collaborator with some of the conference participants and a friend to many of the others. This collection contains a memorial article about Paul-Jean Cahen, written by his longtime research collaborator and coauthor Jean-Luc Chabert. Â
This volume presents a collection of articles highlighting recent developments in commutative algebra and related non-commutative generalizations. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non-Noetherian ring theory, module theory and integer-valued polynomials along with connections to algebraic number theory, algebraic geometry, topology and homological algebra. Most of the eighteen contributions are authored by attendees of the two conferences in commutative algebra that were held in the summer of 2016: "Recent Advances in Commutative Ring and Module Theory," Bressanone, Italy; "Conference on Rings and Polynomials" Graz, Austria. There is also a small collection of invited articles authored by experts in the area who could not attend either of the conferences. Following the model of the talks given at these conferences, the volume contains a number of comprehensive survey papers along with related research articles featuring recent results that have not yet been published elsewhere.
Commutative Ring Theory emerged as a distinct field of research in math ematics only at the beginning of the twentieth century. It is rooted in nine teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area."
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: * Homological dimensions of Prufer-like rings * Quasi complete rings * Total graphs of rings * Properties of prime ideals over various rings * Bases for integer-valued polynomials * Boolean subrings * The portable property of domains * Probabilistic topics in Intn(D) * Closure operations in Zariski-Riemann spaces of valuation domains * Stability of domains * Non-Noetherian grade * Homotopy in integer-valued polynomials * Localizations of global properties of rings * Topics in integral closure * Monoids and submonoids of domains The book includes twenty articles written by many of the most prominent researchers in the field. Most contributions are authored by attendees of the conference in commutative algebra held at the Graz University of Technology in December 2012. There is also a small collection of invited articles authored by those who did not attend the conference. Following the model of the Graz conference, the volume contains a number of comprehensive survey articles along with related research articles featuring recent results that have not yet been published elsewhere.
For over forty years, Robert Gilmer's numerous articles and books have had a tremendous impact on research in commutative algebra. It is not an exaggeration to say that most articles published today in non-Noetherian ring theory, and some in Noetherian ring theory as well, originated in a topic that Gilmer either initiated or enriched by his work. This volume, a tribute to his work, consists of twenty-four articles authored by Robert Gilmer's most prominent students and followers. These articles combine surveys of past work by Gilmer and others, recent results which have never before seen print, open problems, and extensive bibliographies. In a concluding article, Robert Gilmer points out directions for future research, highlighting the open problems in the areas he considers of importance. Robert Gilmer's article is followed by the complete list of his published works, his mathematical genealogical tree, information on the writing of his four books, and reminiscences about Robert Gilmer's contributions to the stimulating research environment in commutative algebra at Florida State in the middle 1960s. in a significant and large area of commutative algebra.
This volume presents a collection of articles highlighting recent developments in commutative algebra and related non-commutative generalizations. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non-Noetherian ring theory, module theory and integer-valued polynomials along with connections to algebraic number theory, algebraic geometry, topology and homological algebra. Most of the eighteen contributions are authored by attendees of the two conferences in commutative algebra that were held in the summer of 2016: "Recent Advances in Commutative Ring and Module Theory," Bressanone, Italy; "Conference on Rings and Polynomials" Graz, Austria. There is also a small collection of invited articles authored by experts in the area who could not attend either of the conferences. Following the model of the talks given at these conferences, the volume contains a number of comprehensive survey papers along with related research articles featuring recent results that have not yet been published elsewhere.
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: * Homological dimensions of Prufer-like rings * Quasi complete rings * Total graphs of rings * Properties of prime ideals over various rings * Bases for integer-valued polynomials * Boolean subrings * The portable property of domains * Probabilistic topics in Intn(D) * Closure operations in Zariski-Riemann spaces of valuation domains * Stability of domains * Non-Noetherian grade * Homotopy in integer-valued polynomials * Localizations of global properties of rings * Topics in integral closure * Monoids and submonoids of domains The book includes twenty articles written by many of the most prominent researchers in the field. Most contributions are authored by attendees of the conference in commutative algebra held at the Graz University of Technology in December 2012. There is also a small collection of invited articles authored by those who did not attend the conference. Following the model of the Graz conference, the volume contains a number of comprehensive survey articles along with related research articles featuring recent results that have not yet been published elsewhere.
This volume, a tribute to the work of Robert Gilmer, consists of twenty-four articles authored by his most prominent students and followers. These articles combine surveys of past work by Gilmer and others, recent results which have never before seen print, open problems, and extensive bibliographies. The entire collection provides an in-depth overview of the topics of research in a significant and large area of commutative algebra.
This book provides the first extensive and systematic treatment of the theory of commutative coherent rings. It blends, and provides a link, between the two sometimes disjoint approaches available in the literature, the ring theoretic approach, and the homological algebra approach. The book covers most results in commutative coherent ring theory known to date, as well as a number of results never published before. Starting with elementary results, the book advances to topics such as: uniform coherence, regular rings, rings of small homological dimensions, polynomial and power series rings, group rings and symmetric algebra over coherent rings. The subject of coherence is brought to the frontiers of research, exposing the open problems in the field. Most topics are treated in their fully generality, deriving the results on coherent rings as conclusions of the general theory. Thus, the book develops many of the tools of modern research in commutative algebra with a variety of examples and counterexamples. Although the book is essentially self-contained, basic knowledge of commutative and homological algebra is recommended. It addresses graduate students and researchers.
Strange Attractors is a collection of approximately 150 poems with strong links to mathematics in content, form, or imagery. The common theme is love, and the editors draw from its various manifestations-romantic love, spiritual love, humorous love, love between parents and children, mathematicians in love, love of mathematics. The poets include literary masters as well as celebrated mathematicians and scientists. "What, after all, is mathematics but the poetry of the mind, and what is poetry but the mathematics of the heart?" So wrote the American mathematician and educator David Eugene Smith. In a similar vein, the German mathematician Karl Weierstrass declared, "A mathematician who is not at the same time something of a poet will never be a full mathematician." Most mathematicians will know what they meant. But what do professional poets think of mathematics? In this delightful collection, the editors present the view of the same terrain-the connections between mathematics and poetry-from the other side of the equation: the poets. Now is your chance to see if the equation balances. -Keith Devlin, mathematician, Stanford University, and author of The Math Gene, The Math Instinct, and The Language of Mathematics
Commutative Ring Theory emerged as a distinct field of research in math ematics only at the beginning of the twentieth century. It is rooted in nine teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area."
|
You may like...
Poetic Inquiry For The Human And Social…
Heidi van Rooyen, Kathleen Pithouse-Morgan
Paperback
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
(1)
|