Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This book reviews principles, techniques and applications of metal, metal oxides, metal sulfides and metal-organic frameworks for removal and degradation of pollutants. Natural materials are often much more advanced than synthetic materials in terms of circularity and are functional, often biodegradable, recyclable and generate little waste. They are, therefore, a source of inspiration for new synthetic materials. In particular, recent research has focused on various types of functional materials such as organic, inorganic, nanostructured and composites for the remediation of environmental pollution.
This book provides a wide-range exploration on the ongoing research and developmental events in environmental nanotechnology. Emerging nanomaterials and its technology have been known to offer unique advantages and are continually showing promising potential attracting continuous global attention. This work thus discusses experimental studies of various nanomaterials along with their design and applications and with specific attention to chemical reactions and their challenges for catalytic systems. It will make a noteworthy appeal to scientists and researchers working in the field of nanotechnology for environmental sciences.
This book describes green photocatalysts and their diverse applications in the fields of environmental sciences and energy. It especially takes a closer look at the removal of air and water pollutants, the generation of hydrogen, photo fuel cells, electrophotocatalysts, solar energy conversions, and green biophotocatalysts. Furthermore it also discusses on the role of catalysts along with their chemical reactions, challenges, past developments and directions for further research on photocatalysts. It includes recent developments of quantum dots (QDs) and photocatalytic applications of QDs such as carbon materials like carbon and graphene based QDs, metal, metal sulfide and metal oxide based QDs as well as a detailed review on various types of templates used for the preparation of porous g-C3N4 and its applications in detail. This is done with special reference to dye degradation, reduction of hexavalent Cr, and reduction of CO2 and for the evolution of H2 photocatalytically. This book offers an intriguing and useful guide for a broad readership in various fields of catalysis, material sciences, environment and energy.
This book presents advanced photocatalytic technologies for wastewater treatment. The fabrication, surface modification, roles and mechanisms of green catalysts are detailed. The catalysts include nanostructured catalysts, semiconductors, metal and non-metal doped catalysts, surface plasmon materials, graphene oxide-based materials, polymer-based composite materials, heterogenous type I and type II catalysts.
This book describes the role and fundamental aspects of the diverse ranges of nanostructured materials for energy applications in a comprehensive manner. Advanced nanomaterial is an important and interdisciplinary field which includes science and technology. This work thus gives the reader an in depth analysis focussed on particular nanomaterials and systems applicable for technologies such as clean fuel, hydrogen generation, absorption and storage, supercapacitors, battery applications and more. Furthermore, it not only aims to exploit certain nanomaterials for technology transfer, but also exploits a wide knowledge on avenues such as biomass-derived nanomaterials, carbon dioxide conversions into renewable fuel chemicals using nanomaterials. These are the areas with lacunae that demand more research and application.
The field of electrochemistry is exploring beyond its basic principles to innovation. New Technologies for Electrochemical Applications presents advancements in electrochemical processes, materials, and technology for electrochemical power sources such as batteries, supercapacitors, fuel cells, hydrogen storage and solar cells. It also examines various environmental applications such as photo electrochemistry, photosynthesis, and coating. Organized to give readers an overview of the current field in electrochemical applications, this book features a historical timeline of advancements and chapters devoted to the topics of organic material and conducting polymers for electrochemical purposes. Established experts in the field detail state-of-the-art materials in biosensors, immunosensors, and electrochemical DNA. This edited reference is a valuable resource for graduate and post-graduate students, and researchers in disciplines such as chemistry, physics, electrical engineering and materials science.
This book reviews principles, techniques and applications of metal, metal oxides, metal sulfides and metal-organic frameworks for removal and degradation of pollutants. Natural materials are often much more advanced than synthetic materials in terms of circularity and are functional, often biodegradable, recyclable and generate little waste. They are, therefore, a source of inspiration for new synthetic materials. In particular, recent research has focused on various types of functional materials such as organic, inorganic, nanostructured and composites for the remediation of environmental pollution.
This book presents comprehensive chapters on the latest research and applications in wastewater treatment using green technologies. Topics include mesoporous materials, TiO2 nanocomposites and magnetic nanoparticles, the role of catalysts, treatment methods such as photo-Fenton, photocatalysis, electrochemistry and adsorption, and anti-bacterial solutions. This book will be useful for chemical engineers, environmental scientists, analytical chemists, materials scientists and researchers.
This book presents advanced photocatalytic technologies for wastewater treatment. The fabrication, surface modification, roles and mechanisms of green catalysts are detailed. The catalysts include nanostructured catalysts, semiconductors, metal and non-metal doped catalysts, surface plasmon materials, graphene oxide-based materials, polymer-based composite materials, heterogenous type I and type II catalysts.
This book describes green photocatalysts and their diverse applications in the fields of environmental sciences and energy. It especially takes a closer look at the removal of air and water pollutants, the generation of hydrogen, photo fuel cells, electrophotocatalysts, solar energy conversions, and green biophotocatalysts. Furthermore it also discusses on the role of catalysts along with their chemical reactions, challenges, past developments and directions for further research on photocatalysts. It includes recent developments of quantum dots (QDs) and photocatalytic applications of QDs such as carbon materials like carbon and graphene based QDs, metal, metal sulfide and metal oxide based QDs as well as a detailed review on various types of templates used for the preparation of porous g-C3N4 and its applications in detail. This is done with special reference to dye degradation, reduction of hexavalent Cr, and reduction of CO2 and for the evolution of H2 photocatalytically. This book offers an intriguing and useful guide for a broad readership in various fields of catalysis, material sciences, environment and energy.
The field of electrochemistry is exploring beyond its basic principles to innovation. New Technologies for Electrochemical Applications presents advancements in electrochemical processes, materials, and technology for electrochemical power sources such as batteries, supercapacitors, fuel cells, hydrogen storage and solar cells. It also examines various environmental applications such as photo electrochemistry, photosynthesis, and coating. Organized to give readers an overview of the current field in electrochemical applications, this book features a historical timeline of advancements and chapters devoted to the topics of organic material and conducting polymers for electrochemical purposes. Established experts in the field detail state-of-the-art materials in biosensors, immunosensors, and electrochemical DNA. This edited reference is a valuable resource for graduate and post-graduate students, and researchers in disciplines such as chemistry, physics, electrical engineering and materials science.
This book summarizes recent findings on the use of new nanostructured materials for biofuels, batteries, fuel cells, solar cells, supercapacitors and health biosensors. Chapters describe principles and how to choose a nanomaterial for specific applications in energy, environment and medicine.
|
You may like...
|