Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
This book describes innovative agricultural methods using thermal and non-thermal microwave or plasma energies. Humans that were nomadic in the past can now stably obtain food by developing agriculture. Cities were formed as a result of remarkable development. Later, chemicals were introduced to agriculture to stabilize the food supply further. Natural products were initially used, but various artificial compounds have been developed for agriculture since the 1900s. To further improve crop productivity and diversification, gene recombination (genetic engineering) using biotechnology has progressed in recent years and continues to develop further. However, these technologies contain pesticide residues and pose safety risks. The innovative new agriculture explained in this book is based on the use of microwaves and plasma that do not rely on chemicals and genetic modification. This is one of the first books focusing on the agricultural usage of microwaves. In addition, it is a technical book that incorporates plasma into agriculture from this perspective. The book covers microwaves and plasmas, which are completely different fields. Thus, it will be attractive to many readers who want to acquaint themselves with these alternative technologies and implement them. This book will be useful to a broad audience including researchers and technicians at Universities and practitioners in industries. It is made accessible to readers across different fields by including abundant figures and by limiting the use of equations to the possible extent.
|
You may like...
|