Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Since the publication of the first edition of Integrated Product and Process Design and Development: The Product Realization Process more than a decade ago, the product realization process has undergone a number of significant changes. Reflecting these advances, this second edition presents a thorough treatment of the modern tools used in the integrated product realization process and places the product realization process in its new context. See what's new in the Second Edition: Bio-inspired concept generation and TRIZ Computing manufacturing cost, costs of ownership, and life-cycle costs of products Engineered plastics, ceramics, composites, and smart materials Role of innovation New manufacturing methods: in-mold assembly and layered manufacturing This book discusses how to translate customer needs into product requirements and specifications. It then provides methods to determine a product's total costs, including cost of ownership, and covers how to generate and evaluate product concepts. The authors examine methods for turning product concepts into actual products by considering development steps such as materials and manufacturing processes selection, assembly methods, environmental aspects, reliability, and aesthetics, to name a few. They also introduce the design of experiments and the six sigma philosophy as means of attaining quality. To be globally viable, corporations need to produce innovative, visually appealing, quality products within shorter development times. Filled with checklists, guidelines, strategies, and examples, this book provides proven methods for creating competitively priced quality products.
Since the publication of the first edition of Integrated Product and Process Design and Development: The Product Realization Process more than a decade ago, the product realization process has undergone a number of significant changes. Reflecting these advances, this second edition presents a thorough treatment of the modern tools used in the integrated product realization process and places the product realization process in its new context. See what's new in the Second Edition: Bio-inspired concept generation and TRIZ Computing manufacturing cost, costs of ownership, and life-cycle costs of products Engineered plastics, ceramics, composites, and smart materials Role of innovation New manufacturing methods: in-mold assembly and layered manufacturing This book discusses how to translate customer needs into product requirements and specifications. It then provides methods to determine a product's total costs, including cost of ownership, and covers how to generate and evaluate product concepts. The authors examine methods for turning product concepts into actual products by considering development steps such as materials and manufacturing processes selection, assembly methods, environmental aspects, reliability, and aesthetics, to name a few. They also introduce the design of experiments and the six sigma philosophy as means of attaining quality. To be globally viable, corporations need to produce innovative, visually appealing, quality products within shorter development times. Filled with checklists, guidelines, strategies, and examples, this book provides proven methods for creating competitively priced quality products.
The era of the fourth industrial revolution has fundamentally transformed the manufacturing landscape. Products are getting increasingly complex and customers expect a higher level of customization and quality. Manufacturing in the Era of 4th Industrial Revolution explores three technologies that are the building blocks of the next-generation advanced manufacturing.The first technology covered in Volume 1 is Additive Manufacturing (AM). AM has emerged as a very popular manufacturing process. The most common form of AM is referred to as 'three-dimensional (3D) printing'. Overall, the revolution of additive manufacturing has led to many opportunities in fabricating complex, customized, and novel products. As the number of printable materials increases and AM processes evolve, manufacturing capabilities for future engineering systems will expand rapidly, resulting in a completely new paradigm for solving a myriad of global problems.The second technology is industrial robots, which is covered in Volume 2 on Robotics. Traditionally, industrial robots have been used on mass production lines, where the same manufacturing operation is repeated many times. Recent advances in human-safe industrial robots present an opportunity for creating hybrid work cells, where humans and robots can collaborate in close physical proximities. This Cobots, or collaborative robots, has opened up to opportunity for humans and robots to work more closely together. Recent advances in artificial intelligence are striving to make industrial robots more agile, with the ability to adapt to changing environments and tasks. Additionally, recent advances in force and tactile sensing enable robots to be used in complex manufacturing tasks. These new capabilities are expanding the role of robotics in manufacturing operations and leading to significant growth in the industrial robotics area.The third technology covered in Volume 3 is augmented and virtual reality. Augmented and virtual reality (AR/VR) technologies are being leveraged by the manufacturing community to improve operations in a wide variety of ways. Traditional applications have included operator training and design visualization, with more recent applications including interactive design and manufacturing planning, human and robot interactions, ergonomic analysis, information and knowledge capture, and manufacturing simulation. The advent of low-cost solutions in these areas is accepted to accelerate the rate of adoption of these technologies in the manufacturing and related sectors.Consisting of chapters by leading experts in the world, Manufacturing in the Era of 4th Industrial Revolution provides a reference set for supporting graduate programs in the advanced manufacturing area.
|
You may like...
|