Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Presenting the most important results of a new branch of functional analysis - subdifferential calculus and its applications - this monograph details new tools and techniques of convex and non-smooth analysis, such as Kantorovich spaces, vector duality, Boolean-valued and infinitesimal versions of non-standard analysis, covering a wide range of topics. The book aims to fill the gap between the theoretical core of modern functional analysis and its applicable sections, such as optimization, optimal control, mathematical programming, economics and related subjects. The material is intended for theoretical mathematicians looking for possible new applications, and applied mathematicians seeking powerful contemporary theoretical methods.
Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking new tools, and for model theorists in search of challenging applications of nonstandard models.
This book collects applications of nonstandard methods to the theory of vector lattices. Primary attention is paid to combining infinitesimal and Boolean-valued constructions of use in the classical problems of representing abstract analytical objects, such as Banach-Kantorovich spaces, vector measures, and dominated and integral operators. This book is a complement to Volume 358 of "Mathematics and Its Applications": Vector Lattices and Integral Operators, printed in 1996. Audience: The book is intended for the reader interested in the modern tools of nonstandard models of set theory as applied to problems of contemporary functional analysis. It will also be of use to mathematicians, students and postgraduates interested in measure and integration, operator theory, and mathematical logic and foundation.
|
You may like...Not available
|