Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
to the English Translation This is a concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces. With standard provisos the presentation is self-contained, exposing about a h- dred famous "named" theorems furnished with complete proofs and culminating in the Gelfand-Nalmark-Segal construction for C*-algebras. The first Russian edition was printed by the Siberian Division of "Nauka" P- lishers in 1983. Since then the monograph has served as the standard textbook on functional analysis at the University of Novosibirsk. This volume is translated from the second Russian edition printed by the Sobolev Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences. in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of distributions, and a supplementary list of theoretical exercises and problems. This edition was typeset using AMS-'lEX, the American Mathematical Society's 'lEX system. To clear my conscience completely, I also confess that: = stands for the definor, the assignment operator, signifies the end of the proof."
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models.
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
The subject of the present book is sub differential calculus. The main source of this branch of functional analysis is the theory of extremal problems. For a start, we explicate the origin and statement of the principal problems of sub differential calculus. To this end, consider an abstract minimization problem formulated as follows: x E X, f(x) --+ inf. Here X is a vector space and f : X --+ iR is a numeric function taking possibly infinite values. In these circumstances, we are usually interested in the quantity inf f( x), the value of the problem, and in a solution or an optimum plan of the problem (i. e. , such an x that f(x) = inf f(X", if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly, i. e. to exhibit the value of the problem and one of its solutions. In this respect it becomes necessary to simplify the initial problem by reducing it to somewhat more manageable modifications formulated with the details of the structure of the objective function taken in due account. The conventional hypothesis presumed in attempts at theoretically approaching the reduction sought is as follows. Introducing an auxiliary function 1, one considers the next problem: x EX, f(x) -l(x) --+ inf. Furthermore, the new problem is assumed to be as complicated as the initial prob lem provided that 1 is a linear functional over X, i. e.
Nonstandard methods of analysis consist generally in comparative study of two interpretations of a mathematical claim or construction given as a formal symbolic expression by means of two different set-theoretic models: one, a "standard" model and the other, a "nonstandard" model. The second half of the twentieth century is a period of significant progress in these methods and their rapid development in a few directions. The first of the latter appears often under the name coined by its inventor, A. Robinson. This memorable but slightly presumptuous and defiant term, non standard analysis, often swaps places with the term Robinsonian or classical non standard analysis. The characteristic feature of Robinsonian analysis is a frequent usage of many controversial concepts appealing to the actual infinitely small and infinitely large quantities that have resided happily in natural sciences from ancient times but were strictly forbidden in modern mathematics for many decades. The present-day achievements revive the forgotten term infinitesimal analysis which reminds us expressively of the heroic bygones of Calculus. Infinitesimal analysis expands rapidly, bringing about radical reconsideration of the general conceptual system of mathematics. The principal reasons for this progress are twofold. Firstly, infinitesimal analysis provides us with a novel under standing for the method of indivisibles rooted deeply in the mathematical classics."
The theory of vector lattices, stemming from the mid-thirties, is now at the stage where its main achievements are being summarized. The sweeping changes of the last two decades have changed its image completely. The range of its application was expanded and enriched so as to embrace diverse branches of the theory of functions, geometry of Banach spaces, operator theory, convex analysis, etc. Furthermore, the theory of vector lattices was impregnated with principally new tools and techniques from other sections of mathematics. These circumstances gave rise to a series of mono graphs treating separate aspects of the theory and oriented to specialists. At the same time, the necessity of a book intended for a wider readership, reflecting the modern diretions of research became clear. The present book is meant to be an attempt at implementing this task. Although oriented to readers making their first acquaintance with vector-lattice theory, it is composed so that the main topics dealt with in the book reach the current level of research in the field, which is of interest and import for specialists. The monograph was conceived so as to be divisible into two parts that can be read independently of one another. The first part is mainly Chapter 1, devoted to the so-called Boolean-valued analysis of vector lattices. The term designates the applica tion of the theory of Boolean-valued models by D. Scott, R. Solovay and P.
to the English Translation This is a concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces. With standard provisos the presentation is self-contained, exposing about a h- dred famous "named" theorems furnished with complete proofs and culminating in the Gelfand-Nalmark-Segal construction for C*-algebras. The first Russian edition was printed by the Siberian Division of "Nauka" P- lishers in 1983. Since then the monograph has served as the standard textbook on functional analysis at the University of Novosibirsk. This volume is translated from the second Russian edition printed by the Sobolev Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences. in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of distributions, and a supplementary list of theoretical exercises and problems. This edition was typeset using AMS-'lEX, the American Mathematical Society's 'lEX system. To clear my conscience completely, I also confess that: = stands for the definor, the assignment operator, signifies the end of the proof."
This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
|
You may like...
|