0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Reviews of Physiology, Biochemistry and Pharmacology 156 (Paperback, Softcover reprint of hardcover 1st ed. 2006): Susan G.... Reviews of Physiology, Biochemistry and Pharmacology 156 (Paperback, Softcover reprint of hardcover 1st ed. 2006)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,895 Discovery Miles 28 950 Ships in 10 - 15 working days

Gastric acid plays a primary role in digestion as well as in the sterilization of food and water. Gastric juice contains the most concentrated physiological acid solution (pH~1) as a result + - of H and Cl ion secretion [hydrochloric acid (HCl) production] by parietal cells in the oxyntic mucosa of the stomach. The combined output of the parietal cells leads to the sec- tion of 1-2 l of HCl at a concentration of 150-160 mmol/l into the interior of the stomach. In order to facilitate the production of acid, the parietal cell relies on the generation of a high + concentration of H ions that are transported into the lumen of the gland. This process is fa- + + cilitated by activation of the gastric H ,K -ATPase, which translocates to the apical pole of + - the parietal cell. K as well as ATP hydrolysis and Cl all play critical roles in the activation + + of gastric H ,K -ATPase and are essential for the functioning of the enzyme (Reenstra and Forte 1990). This review will examine the classical proteins that have been linked to acid secretion as well as some recently identi?ed proteins that may modulate gastric acid secretion, in - dition we discuss the known secretagogues, and their receptors including a new receptor, which upon stimulation can lead to acid secretion.

Reviews of Physiology, Biochemistry and Pharmacology 155 (Paperback, Softcover reprint of hardcover 1st ed. 2005): Susan G.... Reviews of Physiology, Biochemistry and Pharmacology 155 (Paperback, Softcover reprint of hardcover 1st ed. 2005)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,891 Discovery Miles 28 910 Ships in 10 - 15 working days

The eukaryotic translation machinery must recognize the site on a messenger RNA (mRNA) where decoding should begin and where it should end. The selection of the translation start site is generally given by the ?rst AUG codon encoding the amino acid methionine. D- ing initiation soluble translation initiation factors (eukaryotic translation initiation factors [eIFs] in eukaryotes and prokaryotic translation initiation factors [IFs] in prokaryotes) bind the mRNA, deliver the initiator Met-tRNA, and assemble to form a complete 80S ribosome from the 40S and 60S subunits. By progressing along the mRNA in the 5 -to-3 direction the ribosome decodes the information and translates it into the polypeptide chain. During this process, repeated delivery of amino-acyl tRNA (aa-tRNA) to the ribosome, peptide bond formation, movement of the mRNA, and the growing peptidyl-tRNA is mediated by both soluble elongation factors (eukaryotic translation elongation factors [eEFs] in euka- otes and prokaryotic translation elongation factors [EFs] in prokaryotes) and the activity of the ribosome. The ?nal step in the translation process occurs when one of the three t- mination codons occupies the ribosomal A-site. Translation comes to an end and soluble release factors (eukaryotic translation termination factors [eRFs] in eukaryotes and proka- otic translation termination factors [RFs] in prokaryotes) facilitate hydrolytical release of the polypeptide chain (for recent reviews, see Inge-Vechtomov et al. 2003; Kisselev et al. 2003; Wilson and Nierhaus 2003; Kapp and Lorsch 2004).

Reviews of Physiology, Biochemistry and Pharmacology 156 (Hardcover, 2006 ed.): Susan G. Amara, Ernst Bamberg, Sergio... Reviews of Physiology, Biochemistry and Pharmacology 156 (Hardcover, 2006 ed.)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,928 Discovery Miles 29 280 Ships in 10 - 15 working days

Gastric acid plays a primary role in digestion as well as in the sterilization of food and water. Gastric juice contains the most concentrated physiological acid solution (pH~1) as a result + - of H and Cl ion secretion [hydrochloric acid (HCl) production] by parietal cells in the oxyntic mucosa of the stomach. The combined output of the parietal cells leads to the sec- tion of 1-2 l of HCl at a concentration of 150-160 mmol/l into the interior of the stomach. In order to facilitate the production of acid, the parietal cell relies on the generation of a high + concentration of H ions that are transported into the lumen of the gland. This process is fa- + + cilitated by activation of the gastric H ,K -ATPase, which translocates to the apical pole of + - the parietal cell. K as well as ATP hydrolysis and Cl all play critical roles in the activation + + of gastric H ,K -ATPase and are essential for the functioning of the enzyme (Reenstra and Forte 1990). This review will examine the classical proteins that have been linked to acid secretion as well as some recently identi?ed proteins that may modulate gastric acid secretion, in - dition we discuss the known secretagogues, and their receptors including a new receptor, which upon stimulation can lead to acid secretion.

Reviews of Physiology, Biochemistry and Pharmacology 155 (Hardcover, 2005 ed.): Susan G. Amara, Ernst Bamberg, Sergio... Reviews of Physiology, Biochemistry and Pharmacology 155 (Hardcover, 2005 ed.)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,929 Discovery Miles 29 290 Ships in 10 - 15 working days

The eukaryotic translation machinery must recognize the site on a messenger RNA (mRNA) where decoding should begin and where it should end. The selection of the translation start site is generally given by the ?rst AUG codon encoding the amino acid methionine. D- ing initiation soluble translation initiation factors (eukaryotic translation initiation factors [eIFs] in eukaryotes and prokaryotic translation initiation factors [IFs] in prokaryotes) bind the mRNA, deliver the initiator Met-tRNA, and assemble to form a complete 80S ribosome from the 40S and 60S subunits. By progressing along the mRNA in the 5 -to-3 direction the ribosome decodes the information and translates it into the polypeptide chain. During this process, repeated delivery of amino-acyl tRNA (aa-tRNA) to the ribosome, peptide bond formation, movement of the mRNA, and the growing peptidyl-tRNA is mediated by both soluble elongation factors (eukaryotic translation elongation factors [eEFs] in euka- otes and prokaryotic translation elongation factors [EFs] in prokaryotes) and the activity of the ribosome. The ?nal step in the translation process occurs when one of the three t- mination codons occupies the ribosomal A-site. Translation comes to an end and soluble release factors (eukaryotic translation termination factors [eRFs] in eukaryotes and proka- otic translation termination factors [RFs] in prokaryotes) facilitate hydrolytical release of the polypeptide chain (for recent reviews, see Inge-Vechtomov et al. 2003; Kisselev et al. 2003; Wilson and Nierhaus 2003; Kapp and Lorsch 2004).

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Dala Plastic Sculpture Tool Set (5 Pack)
R40 Discovery Miles 400
CWR Modelling Tools - 5 Pieces in…
R52 Discovery Miles 520
Princeton Catalyst #23 Contour Painting…
R133 R124 Discovery Miles 1 240
JOVI Modelling Tool Set of 5
R81 Discovery Miles 810
Pebeo Gedeo - Demoulding Vaseline - 75ml
R297 Discovery Miles 2 970
Dala Sculpture Wire Brush (Wooden…
R59 Discovery Miles 590
DAS Plastic Cutting Tools (Pot of 48)
R370 R344 Discovery Miles 3 440
CWR Board Display 6 Modelling Tools+ 6…
R796 Discovery Miles 7 960
Princeton Catalyst #6 30mm Blade…
R239 R222 Discovery Miles 2 220
Dala Polymer Clay - Red (60g)
R32 Discovery Miles 320

 

Partners